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Abstract 

The steady states of two models of the double-gyre wind-driven ocean circulation are 
studied. The link between the steady state solutions of the models and their time-mean 
and low-frequency variability is explored to test the hypothesis that both stable and 
unstable fixed points influence shape the model's attractor in phase space. 

The steady state solutions of a barotropic double-gyre ocean model in which the 
wind-stress curl input of vorticity is balanced primarily by bottom friction are studied. 
The bifurcations away from a unique and stable steady state are mapped as a function of 
two nondimensional parameters, (<S/,£5), which can be thought of as measuring respec- 
tively the relative importance of the nonlinear advection and bottom damping of relative 
vorticity to the advection of planetary vorticity. 

A highly inertial branch characterized by a circulation with transports far in excess of 
those predicted by Sverdrup balance is present over a wide range of parameters including 
regions of parameter space where other solutions give more realistic flows. For the range 
of parameters investigated, in the limit of large Reynolds number, 5//5s ->• oo, the iner- 
tial branch is stable and appears to be unique. This branch is anti-symmetric with respect 
to the mid-basin latitude like the prescribed wind-stress curl. For intermediate values 
of 6i/6s, additional pairs of mirror image non-symmetric equilibria come into existence. 
These additional equilibria have currents which redistribute relative vorticity across the 
line of zero wind-stress curl. This internal redistribution of vorticity prevents the solution 
from developing the large transports that are necessary for the anti-symmetric solution 
to achieve a global vorticity balance. Beyond some critical Reynolds number, the non- 
symmetric solutions are unstable to time-dependent perturbations. Time-averaged solu- 
tions in this parameter regime have transports comparable in magnitude to those of the 
non-symmetric steady state branch. Beyond a turning point, where the non-symmetric 
steady state solutions cease to exist, all the computed time-dependent model trajectories 
converge to the anti-symmetric inertial runaway solution. The internal compensation 
mechanism which acts through explicitly simulated eddies is itself dependent explicit 
dissipation parameter. 



Using the reduced-gravity quasigeostrophic model an investigation of the link between 
the steady state solutions and the model's low-frequency variability is conducted. If the 
wind-stress curl is kept anti-symmetric, successive pairs of non-symmetric equilibria come 
into existence via symmetry-breaking pitchfork bifurcations as the model's biharmonic 
viscosity is reduced. Succesive pairs of mirror image equilibria have an additional half 
meander in the jet. The distinct energy levels of the steady state solutions can be under- 
stood in part by there different inter-gyre fluxes of vorticity. Those solutions with weak 
inter-gyre fluxes of vorticity have large and energetic recirculation cells which remove 
excess vorticity through bottom friction. Those solutions with strong inter-gyre fluxes of 
vorticity have much smaller and less energetic recirculation cells. 

A significant fraction of the variance (30%) of the interface height anomaly can be 
accounted by four coherent structures which point away from the time-mean state and 
towards four steady state solutions in phase space. After removing the variance which 
projects onto the four modes, the remaining variance is reduced predominantly at low- 
frequencies, showing that these modes are linked to the low-frequency variability of the 
model. Furthermore, the time-averaged flow fields within distinct energy ranges show 
distinct patterns which are in turn similar to the distinct steady state solutions. 
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Chapter 1 

Introduction 

Numerical ocean models are an indispensable tool for understanding the climate system 

and possibly for predicting climate change. Ocean models are not only used in conjunc- 

tion with observations to estimate the current state of the oceans, but also to estimate 

the state of the ocean under different mechanical and thermodynamical forcing. These 

models depend on boundary conditions and sub-grid-scale parameterizations that are 

poorly known from observations. For climate studies, the time evolution of ocean models 

over hundreds to thousands of years is of paramount importance. This makes the choice 

of suitable parameterizations of dissipation rather crucial, since dissipative forces, no 

matter how small, have enough time to become important. 

For the wind-driven ocean circulation, the sub-grid-scale parameterization of mix- 

ing processes provides an explicit dissipation term in the governing equation. Pedlosky 

(1996), reviews the role played by dissipation in theories of the wind-driven circulation 

within the context of homogeneous models. In all cases that have been studied, the ex- 

plicit frictional dissipation is responsible for balancing the continuous input of vorticity 

by the action of the wind-stress. The hope that as the boundary-layer Reynolds number 

is increased, the total circulation would become independent of the particular frictional 

model adopted has been disappointed. As demonstrated by Ierley and Sheremet (1995), 

in a single-gyre model with free-slip boundary conditions, a steady basin-filling inertial 
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gyre with velocities far in excess of those predicted by Sverdrup balance is the only 

solution for sufficiently large boundary-layer Reynolds number. 

Of particular interest to our study is the double-gyre simulation by Marshall (1984). 

In this model, a source of negative vorticity input by the curl of the wind-stress in 

the southern region of the basin is balanced by a positive source of vorticity of equal 

magnitude in the northern region. Marshall's, study stands out because it appears to 

provide an example in which time-dependent eddies prevent the development of the 

inertial runaway solution. In this simulation, the amount of negative vorticity put in 

by the wind in the sub-tropical gyre is roughly balanced by the eddy flux of negative 

vorticity from the southern gyre to the northern gyre, thereby eliminating the need 

for the vorticity input by the wind to be eliminated in the western boundary-layer. It 

is important to point out, however, as Pedlosky (1996), emphasizes, that this internal 

compensation mechanism can only apply for the singular case in which there is no net 

input of vorticity by the curl of the wind-stress over the entire domain — any imbalance 

must be removed by the explicit dissipation. 

Despite its limited applicability to the real ocean case, the internal compensation 

mechanism deserves further study since its action appears to make the time-averaged so- 

lutions independent of the explicit dissipation parameterization. In particular, one would 

want to know which type of instabilities allow the internal compensation mechanism to 

act, and whether inertial runaway can be truly avoided as the boundary-layer Reynolds 

number is increased. The first motivation for this study is to address these issues. 

To this end, we investigate the steady state solutions and their stability for a large 

range of parameters. The techniques of numerical bifurcation theory (Seydel 1994) are 

used to unravel the bifurcation structure of the steady state equilibria of the ocean model 

introduced by Marshall (1984). The model's interesting novelty is that the boundary con- 

ditions are such that no relative vorticity flux is allowed through the basin walls, despite 

the fact that the model has both bottom friction and lateral diffusion. The boundary con- 

ditions are therefore dynamically equivalent to those of a model having bottom friction 
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alone. The model nonetheless retains a lateral diffusion term which prevents the devel- 

opment of discontinuities in the relative vorticity field. This formulation of the boundary 

condition for the eddy diffusion term is based on the observation that geostrophic eddies 

act only to redistribute vorticity laterally and not as a sink of vorticity through the basin 

walls. The model is essentially the same as that used in a study of steady state solutions 

by Cessi and Ierley (1995), but differs in the choice of dissipation operator and boundary 

conditions; Cessi and Ierley (1995), used Munk type lateral diffusion with free-slip at the 

eastern and western walls and periodic boundary conditions at the northern and south- 

ern walls. A discussion of this super-slip boundary condition, as well as other choices of 

boundary conditions can be found in Pedlosky (1996). 

By studying the steady state solutions, we will discover in which region of parameter 

space the circulation retains the Sverdrup balance as part of the solution and in which 

part of parameter space the circulation is of the inertial runaway type. By studying the 

bifurcation structure of the steady state solutions, we will map out where qualitative 

changes in the nature of the solution occur, and thus carve out regions of parameter 

space where the internal compensation mechanism can act. 

The second motivation for this study deals with the issues of low-frequency variability 

and multiple equilibria. As pointed out by Jiang et al. (1995), the oceans' western 

boundary currents offer clear examples of low-frequency variability in the wind-driven 

ocean circulation. Some examples are provided by the path of the Kuroshio alternating 

between a large and a small meander state with a period of several years (Taft 1972), by 

the latitude of separation of the Brazil/Malvinas current system varying on inter-annual 

time-scales, (Olson et al. 1988), and by the mean position of the Gulf stream that varies 

inter-annually (Brown and Evans 1987). Inter-annual and longer time-scale variability is 

a possible manifestation of the nonlinearity of the wind-driven circulation since it cannot 

be accounted for by the seasonal cycle of the forcing. Other mechanisms are however 

possible. Frankignoul and Hasselman (1977), have shown that because of the relatively 

slow response time of the ocean compared to the atmosphere, the ocean can integrate the 
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high frequency atmospheric forcing leading to enhanced variability at longer time-scales. 

Another possibility is that some of the low frequency variability in the climate system 

can be understood in terms of coupled modes between the ocean and atmosphere. In this 

scenario, temperature anomalies advected around the oceanic gyres with a time-scale of 

a decade or so, couple to the atmosphere to produce wind fields which in turn re-enforce 

the anomalies. Finally, another possibility is that the variability is due to the internal 

dynamics of ocean currents. As we will discuss below, adiabatic ocean models forced by 

steady winds are quite capable of producing the types of variability offered by the above 

examples. 

Because of the nonlinearity of the governing equations, ocean models can exhibit a rich 

variety of dynamical behaviors, including multiple equilibria, self sustained oscillations 

and chaos. The ideas of dynamical systems theory can be used to investigate the intrinsic 

variability of these models. Dynamical systems theory has been applied extensively to 

the thermohaline circulation because of its clear role in the earth's climate system — 

it transports large amounts of heat poleward. The gyre dynamics associated with the 

wind-driven circulation has received much less attention from the point of view of low- 

frequency variability and multiple equilibria. However, t is surely not less important. 

For example, the mid-latitude gyres of the North Pacific are probably the main agents 

of poleward heat transport in that ocean, and in the North Atlantic the modeling study 

of Spall (1996a), (1996b), has demonstrated how the surface wind-driven circulation can 

be coupled to the deep western boundary current and thus affect the strength of the 

thermohaline circulation. 

Recently, several studies have introduced the concepts of attractors and fixed points 

to help characterize the behavior of wind-driven ocean models. For dissipative dynamical 

systems, all solutions converge, as t —> oo, to a complicated set called the global attractor, 

which may be fractal. This set is, in general, finite dimensional, and embodies the long 

time evolution of the model, including turbulent states. Although it is not yet numerically 

feasible to fully map out the global attractor of general circulation ocean models, it 
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is possible to find their fixed points . These fixed points lie in the global attractor 

and can be useful in characterizing the long time evolution of the model. Speich et 

al. (1995) extended the work of Jiang (1995) and mapped the successive bifurcations of 

a wind-driven shallow-water model. They found multiple equilibria for realistic values 

of the forcing and dissipation parameters. These equilibria are the result of nonlinear 

interactions between the two main recirculation cells that flank the sides of the inter- 

gyre jet. The equilibria come into existence via an imperfect or perturbed pitchfork 

bifurcation of the nearly anti-symmetric solution x (see Appendix A). They also made 

some comparison with observations of the Gulf Stream and Kuroshio Extensions and 

concluded that the internal variability of their simulated ocean could be an important 

factor in the observed inter-annual variability of these currents. 

Dijkstra and Katsman (1997) explored the successive transitions from a unique steady 

state solution to time-dependence of the doulbe-gyre circulation in a reduced gravity and 

in a 2 layer quasigeostrophic model as the lateral friction was decreased. For the reduced 

gravity model they identified two classes of modes which lead to oscillatory instabilities. 

The first class with a monthly to inter-monthly period originates from the ocean basin 

modes of the inviscid theory (Pedlosky 1987). Another class of modes which they call 

gyre-modes exists only because of the presence of the gyres. These modes have an inter- 

annual period of the order of the advective time scale of the gyre circulation. Both modes 

were found to become unstable for values of lateral friction lower than that at which the 

symmetry breaking pitchfork bifurcation occurred. This should be contrasted with the 

2-layer model where the linear stability boundary of the anti-symmetric solution consists 

of a Hopf bifurcation, and not the pitchfork bifurcation (Dijkstra and Katsman 1997). 

The Hopf bifurcation is the result of baroclinic instability and the excited modes have a 

period with the annual time-scale. 

Meacham (submitted 1997) studied the origin of low-frequency variability in a ho- 

^or these simulations the wind-stress curl profile is anti-symmetric, but the shallow water governing 
equations do not have the meridional symmetry property of the QG equations. 
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mogeneous ocean model forced by steady wind-stress. He found that irregular large 

amplitude vacillations associated with the inertial recirculation gyres characterize the 

behavior of the model when the forcing is sufficiently strong. In addition, he found three 

limit-cycles which could be followed over ranges of parameters where they were stable 

and conjectured that these simple solutions continued to exist, though unstable, for lower 

values of the dissipation parameter. These limit cycles come into existence via a Hopf 

bifurcation for each of the three steady state solutions, one anti-symmetric and the other 

two from a pair of non-symmetric equilibria. He also showed that the large amplitude ir- 

regular vacillation is most likely a cycling between the neighborhood of the non-symmetric 

limit cycles and the low energy anti-symmetric limit cycle. The type of variability that 

results from such oscillations depends on the behavior of phase space along the whole 

trajectory and is the result of what is known as a global bifurcation. In general the fixed 

point solutions have associated with them a stable and an unstable manifold. Almost 

all trajectories which begin in a neighborhood of the fixed point are eventually expelled 

along the unstable manifold. These trajectories can, however, sometimes return to the 

neighborhood of the fixed point by following a trajectory close to the stable manifold. In 

this sense the unstable fixed points act to "steer" the trajectory of the time dependent 

models (Legras and Ghil 1985), thus providing a mechanism for recurrent and persistent 

dynamical regimes. Global bifurcations happen when the unstable manifold intersects 

the stable manifold of a fixed point thus giving rise to a large amplitude oscillation. This 

should be contrasted with the oscillations associated with Hopf bifurcation points which 

give rise to oscillations whose amplitude grow as yjv — i/c, where vc is the critical value of 

the parameter at the bifurcation point. Hopf bifurcations are local in that the resulting 

oscillation depends only on the local behavior of phase space and can be understood from 

the model linearized about the bifurcation point. Global bifurcations on the other hand 

have oscillations which are of finite amplitude, and can not be understood only in terms 

of the linear behavior of the model near the fixed point. 

The idea that some simple though unstable solutions can strongly influence the shape 
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of the system attractor is not a new one, and has been explored to some extent in 

atmospheric models, in the context of preferred weather regimes. It has been shown in 

simple atmospheric models that the time-dependent trajectory can spend a considerable 

amount of time in the neighborhood of simple steady state solutions even if they are 

unstable (Legras and Ghil 1985; Branstator and Opsteegh 1989). 

Preferred dynamical regimes are also present in ocean models. Using a primitive 

equation model of the Gulf Stream/Deep Western Boundary Current crossover, Spall 

(1996b), found low-frequency variability associated with the transition between two pre- 

ferred dynamical states, which included a high energy state with the Gulf stream exten- 

sion penetrating deep into the basin and a low energy state with a weakly penetrating 

Gulf Stream extension. The mechanism controlling the transition between the two states 

involved the interaction between the surface wind-driven currents and the deep western 

boundary current. 

In a simpler reduced gravity QG model of the double-gyre circulation, McCalpin and 

Haidvogel (1996), also found low-frequency variability. It was associated with irregular 

transitions among several preferred dynamical regimes, including a high energy state with 

a jet penetrating deep into the basin, a low energy state with a weakly penetrating jet, 

and an intermediate energy state with intermediate jet penetration. Despite the differ- 

ences between the models of Spall and McCalpin and Haidvogel, the preferred dynamical 

regimes were similar in both studies. The jet penetration scale and the intensity of the 

eddy energy field varied among states in a similar fashion for both models. Even though 

the mechanism for the transition between states is different, the similar nature of the 

preferred regimes suggest that the existence of these regimes might be the result of the 

dynamics of the wind-driven circulation alone. It further suggests the possibility that the 

existence of multiple regimes might persist through a hierarchy of models, from simple 

QG dynamics to progressively more sophisticated dynamics and perhaps to fully coupled 

ocean atmosphere climate models. 

The above considerations make it crucial that the long time evolution (t —> oo) of 
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ocean models of varying complexity and with differing sub-grid-scale parameterizations 

and boundary conditions be investigated in a systematic way for a wide range of parame- 

ter values. As a contribution towards this goal, this thesis presents a study of the steady 

state solutions of homogeneous models of the non-linear wind-driven ocean circulation. 

Chapter 2 consists of a study of the the fixed points and of the fixed points' stability 

properties for a barotropic quasigeostrophic model with super-slip boundary condition. 

Chapter 3 focuses on intrinsic low-frequency variability within the context of a reduced 

gravity quasigeostrophic model with free-slip boundary conditions. The steady state solu- 

tions are independent of the choice of deformation radius since the radius of deformation 

enters the governing equation only in a term with a time derivative. Because of this, the 

fixed points of the barotropic model are also fixed points of the reduced gravity model, 

and vice versa. The stability of the fixed points does however depend on the choice of 

deformation radius. In Chapter 4, we review the thesis' major results and discuss possible 

future research directions. Appendix A reviews the some terminology from bifurcation 

theory. 
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Chapter 2 

Barotropic Model 

2.1    Homogeneous Models of the Wind-Driven Cir- 

culation: Review 

It is useful to review the theory of the wind-driven ocean circulation within the context 

of homogeneous models before proceeding. A more complete discussion can be found 

in Pedlosky (1996). Scaling analysis suggests that over most of the mid-latitude ocean 

basins, inertial and frictional terms in the vorticity equation can be neglected in favor of a 

balance between the advection of planetary vorticty gradients and the input of vorticity by 

the curl of the wind-stress. This linear vorticity balance, also called the Sverdrup relation 

cannot, however, hold over the whole basin, since dissipative effects must be important in 

some part of the basin if the flow is to remain bounded in time. Through the inclusion of a 

boundary layer along the western edge of the basin, disspative effects can be incorporated 

into the solution without the need of abandoning the Sverdrup solution over the rest of 

the basin. But when the resulting solution is substituted into the discarded inertial 

terms, it is discovered that in the boundary layer, these terms are as important as others 

in the vorticity equation. Therefore, the inertial terms must be retained in the western 

boundary layer if nowhere else.  It turns out that where the flow field of the Sverdrup 
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solution is westward, the effect of the inertial terms can be added successfully to the 

solution without destroying the boundary layer nature of the solution. Where the flow 

field is eastward, however, the solution loses its boundary layer character. In numerical 

simulations, these regions of eastward flow are the site where recirculation gyres form. 

Furthermore, as the boundary layer Reynolds number (measuring the relative strength 

of inertial and frictional terms) increasese, these recirculation gyres extend outwards to 

fill the entire basin and completely destroy the Sverdrup solution. 

2.2    Model Formulation 

As mentioned in the introduction, the model configuration is the same as that used in 

Marshall (1984). The governing equation, in nondimensional form, is the barotropic 

vorticity equation with bottom friction and biharmonic lateral diffusion, 

^ + u • Vq = ^V x T - ös( - 4V4C in V, (2.1) 

where 

C = Vfy and q = 5% + y, (2.2) 

are the relative and potential vorticities. 

The dimensionless parameters in the problem are: 

*=fef • *=if (£f £■ -H^f •   (23) 

the inertial, Stommel and diffusive layer thicknesses scaled by the width of the basin 

L. The scales which lead to the nondimensional parameters and that must be used to 

reconstruct the dimensional variables are the following: 

ipdim = -^77^' *<K»n = (ßL)~lt, xdim = Lx, and ydim = Ly. (2.4) 

The domain of integration is a rectangular basin given by 

V = {(re, y) | 0 < x < 1 and -I <y <1}. (2.5) 
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The boundary conditions are the following 

t/) = 0, on dV, (2.6) 

VC • n = 0, on dV, (2.7) 

V(V2C) • n = 0 on dV. (2.8) 

Note that the integral of the lateral diffusive term over the entire basin vanishes because 

of the no-flux boundary conditions in Eq. 7, so that no net source or sink of vorticity 

is introduced by the lateral diffusion. The source of vorticity due to the curl of the 

wind-stress is given by 

V x r = 7rsin(7ry). (2.9) 

As Veronis (1966) discusses, the fact that many complicating physical processes are 

assumed out of the system means that we can not think of such a simple model as the 

first term in a sequence that converges to the "real" ocean. Rather, the utility of such 

a model is that it can be used to check and build our intuition about the behavior of 

oceanic models. In this respect, it is better thought of as being at the base of a hierarchy 

of models which have successive levels of sophistication and realism. Investigating the 

behavior of the model as parameters are allowed to tend to various limits is fundamental 

in characterizing its behavior. Thus, the goal of this study is to consider a wide range of 

parameter (Si,Ss,SH) values. 

It is useful to consider some typical values for the model's parameters which give 

results reproducing the major gross features of the wind-driven circulation. Following 

Marshall (1984), the inertial layer thickness, Si = y/1 x 10~3 = 0.0316 corresponds to an 

ocean in which r = 10"1 N m~2, p = 103 kg m-3, ß = 2x 10~u irrV1, H = 5 x 102 m, 

L = 106 m; the nondimensional Stommel layer thickness Ss = 10~2 corresponds to / = 

10~4 s~1,Av = lx 10~4 m2 s-1, and the horizontal hyper-diffusive thickness SH = 0.0313, 

corresponds to AH = 6 x 1011 x m2 s_1. The time scale is given by T = 1/ßL, so that one 

can relate Ss to a damping time-scale of a = !/{SsßL) = 58 days. The lateral diffusion 
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parameter is usually chosen to be the smallest possible value that will keep the vorticity 

fields free of grid scale oscillations, but is often justified as an effective eddy viscosity. 

Many physical processes contribute to the effective dissipation, making it difficult to 

estimate from observation. Most of these processes cannot be directly simulated in a 

barotropic QG model and are lumped in the effective eddy diffusivity, while others like 

the internal compensation mechanism, can be simulated provided the model resolution is 

sufficient to allow eddies. The model behavior is relevant even where it does not produce 

realistic flows, since it helps to understand how processes that are being simulated depend 

on those processes parameterized by eddy diffusivity. The method of solution is discussed 

in detail in Appendix B. 

2.3    Multiple Equilibria 

2.3.1    Bifurcation Structure as a Function of 5i and 5s 

Using a continuation algorithm for finding both steady state solutions and the corre- 

sponding least stable eigenmode (or one of the unstable eigenmodes if the solution is 

unstable), the bifurcations of the steady state equilibria were mapped as a function of 

the nondimensional parameters Sj and Ss. All of the solutions presented in this section 

used Nx = 33 and Ny = 65 grid points in the x and y directions respectively, with 

uniform grid spacing of dx = dy = 0.03. The lateral diffusivity was fixed at 8H = 0.04 

which is slightly larger than the grid spacing. Section 2.3.7 discusses the sensitivity of 

the solutions to the magnitude of 8H. 

For parameter values in the range 0.01 < Ss < 0.1 and 0 < 6r < 0.4, up to 6 different 

types of equilibria were found. Each will be discussed in turn in the next subsections. 

Before proceeding it is useful to give a review of the multiple equilibria results of Cessi 

and Ierley (1995), followed by a brief overview of the multiple equilibria found in this 

study. 

It is important to recall that the model formulation used by Cessi and Ierley, as well as 
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the one used here, satisfies the symmetry property ip -> -ip, y ->■ -y. Equilibrium states 

that satisfy the above symmetry property are said to be anti-symmetric, and those that 

do not are said to be non-symmetric. Because of this symmetry property, non-symmetric 

equilibria always come in pairs which are related to each other by ip —>■ —tp, y -> — y. 

Cessi and Ierley (1995), identified 5 different types of equilibria in a parameter space 

defined by (<$/, 6M), where SM is the nondimensional Munk boundary-layer thickness. 

Their multiple equilibria included three different anti-symmetric equilibria which they 

called type Al, A2, and A3, as well as two pairs of non-symmetric equilibria which they 

called type Nl and N2. 

For the entire region of parameter space explored in the present study, only one anti- 

symmetric equilibrium was found. In the terminology of Cessi and Ierley this equilibrium 

solution is said to be of type A. Other regions of parameter space have alternate equilibria 

which come into existence via bifurcations of this anti-symmetric equilibrium. These 

equilibria are non-symmetric and come in pairs. Three types of non-symmetric equilibria 

bifurcate from the anti-symmetric equilibrium, those of type Nl and N2 as well as a third 

not found by Cessi and Ierley, which we define to be of type N3. Finally, the solution 

branch of type Nl undergoes a fold catastrophe, whereby two additional non-symmetric 

equilibria come into existence. We call these type Nli and Nl2. Each of these solution 

types are discussed in the following subsections. 

2.3.2    Anti-Symmetric Equilibria (type A) 

In Figure 2.1, a parameter chart indicates the bifurcations of the anti-symmetric equi- 

libria, discussed below. Typical anti-symmetric stream-function and potential vorticity 

fields are shown in Figure 2.2. This sequence of anti-symmetric equilibria is taken along 

the left most side of the parameter chart shown in Figure 2.1. Apart from being anti- 

symmetric, these equilibrium solutions are characterized by the formation of inertial 

recirculation cells flanking the southern and northern edge of the inter-gyre boundary. 

It is important to mention that the formation of closed recirculation cells trapped near 
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the western wall does not occur when 83 is bigger than 8H-  This point will be further 

discussed in Section 2.3.7. The remainder of this section is restricted to the case 8H > $s- 

For moderate values of £/, the recirculation cells are small and trapped near the 

western wall (Figure 2.2, 8j — 0.03). In the region of parameter space near the first 

pitchfork bifurcation (lower part of the lower dashed lobe in Figure 2.1), both viscous 

effects and advection of planetary and relative vorticity are important near the western 

boundary-layer and in the region near the recirculation gyres. Note how the q contours 

run almost parallel to the western wall, and form a sharp front where the latitude of 

zero wind-stress curl intersects the western boundary. Away from the western boundary 

and recirculation cells, the flow is essentially in Sverdrup balance. In this region, the q 

contours are now parallel to the latitude lines. For increasing values of 81, the recircu- 

lations cells expand in size, in both the zonal and meridional directions. For parameter 

values close to the second pitchfork bifurcation (upper part of the lower dashed lobe in 

Figure 2.1), the recirculation gyres have expanded across the basin to the eastern wall 

(Figure 2.2, 5/ = 0.06). Further increasing 8t leads to basin-filling inertial gyres (Fig- 

ure 2.2, 81 = 0.12). Note how the q or ( contours are parallel to the stream lines. The 

Sverdrup balance is then no longer valid anywhere in the basin. The dominant balance 

is quasi-inertial, i.e. J(ip, V2ip) ~ 0. Bottom friction which is not important in any local 

balance is nevertheless important in maintaining the gyre integrated vorticity balance. 

The lower dashed lobe in Figure 2.1 is the location of bifurcation points at which non- 

symmetric equilibria of type Nl and N2 bifurcate from the anti-symmetric equilibrium. 

The lower part of the dashed curve gives rise to steady states, (also known as fixed 

points), of type Nl and the upper part gives rise to fixed points of type N2. The non- 

symmetric equilibrium of type Nl and N2 will be described in Sections 2.3.3 and 2.3.4 

respectively. The upper dashed lobe inside the dotted lobe in Figure 2.1 is the location of 

bifurcation points leading to non-symmetric equilibria of type N3. Equilibria of type N3 

are described in Section 2.3.5. Figure 2.5 which is fully discussed in Section 2.3.3, shows 

a bifurcation plot of max(-0) + min(^) (a measure of the asymmetry of the solution) 
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Figure 2.1: Parameter chart for SH — 0.04, showing the bifurcations of the anti-symmetric 
equilibrium (A). Dashed lines indicate pitchfork bifurcations and dotted lines indicate 
Hopf bifurcations. The anti-symmetric equilibrium exist for the full range of parameters 
shown in the chart. It is unstable in the shaded region, and stable in the unshaded region. 
The lower dashed lobe, indicates where non-symmetric equilibria of type Nl (lower part 
of lower dashed lobe), and of type N2 (upper part of lower dashed lobe) bifurcate from the 
anti-symmetric equilibrium via a symmetry breaking pitchfork bifurcation. The upper 
dashed lobe indicates where non-symmetric equilibria of type N3 bifurcate from the anti- 
symmetric branch via a pitchfork bifurcation. 
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Figure 2.2: Contour plots of iß (top row) and q (bottom row) for the anti-symmetric 
equilibrium (type A) with Ss = 0.01, 5H = 0.04, and 8i as indicated. The dashed lines 
indicate the negative contours and the solid lines indicate the positive contours. The 
thick solid line indicates the zero contour. The contour interval is 0.03 for ip and 0.02 for 
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versus 6{ for a value of 5S = 0.01, which is along the left most side of the parameter chart 

shown in Figure 2.1. It shows the four symmetry breaking picthfork bifurcations that 

occur as one moves upwards and across the dashed lobes in Figure 2.1. 

The anti-symmetric equilibrium is unstable for parameter values in the shaded regions 

of Figure 2.1, and stable in the unshaded region. The marginal stability curve separating 

stable from unstable regions of parameter space is composed of a curve along which Hopf 

bifurcations occur (dotted line) and a curve along which pitchfork bifurcations occur 

(lower dashed lobe). Hopf bifurcations lead to self sustained oscillations of the flow field, 

and pitchfork bifurcations are at the origin of symmetry breaking multiple equilibria. 

2.3.3    Non-symmetric Equilibrium (type Nl) 

In Figure 2.3, a parameter chart indicates the bifurcations associated with the non- 

symmetric equilibrium state of type Nl. Typical non-symmetric stream-function and 

potential vorticity fields of type Nl are shown in Figure 2.4, along with equilibria of type 

A and N2 for comparison. As mentioned above, the non-symmetric states of type Nl 

come into existence via a symmetry breaking pitchfork bifurcation of the anti-symmetric 

state. The pitchfork bifurcation points that mark the emergence of the type Nl equilibria 

are located on the lower dashed curve in Figure 2.3. The non-symmetric equilibria exist 

only in the region bounded by the lower dashed curve, and the upper solid curve. Within 

this region, it is stable in the unshaded area, and unstable in the shaded area. Within 

the wedge shaped region bounded by the saddle node bifurcations emanating from the 

cusp point labeled CP1 there are two additional equilibria defined to be of type Nli 

and Nl2. The distinction between equilibria of types Nl, Nlj, and Nl2 is essentially 

in the geometrical arrangement of the multiple circulation cells within the basin. A full 

discussion of equilibria of type Nli, and Nl2 will be given in Section 2.3.6. Along the 

solid curve labeled SN1, the Nl branch experiences a saddle-node bifurcation and non- 

symmetric equilibria of type Nlx come into existence. The equilibria of type Nlx also 

experience a saddle-node bifurcation along the lower solid curve labeled SN2, and non- 
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symmetric equilibria of type Nl2 come into existence. Refering again to Figure 2.5, one 

can see the saddle-node bifurcations as one moves across the solid curves in Figure 2.3. 

In a neighborhood of the pitchfork bifurcation point the equilibria are characterized 

by moderate recirculation gyres with essentially the same vorticity balance as the anti- 

symmetric state, provided that SH > Ss, see discussion in Section 2.3.7. As Si is increased, 

and one moves away from the bifurcation point, one of the recirculation cells becomes 

stronger. The weaker of the two recirculation cells crosses the line of zero wind-stress 

curl as it is pulled by its more intense counterpart. As Ss is decreased, and 5j is kept 

near the center of the shaded region in Figure 2.3, the flow field becomes progressively 

more asymmetric, with large meanders crossing the latitude of zero wind-stress curl. 

These meanders permit vorticity to be fluxed across the latitude of zero wind-stress 

curl, so that the integrated vorticity balance need not be achieved entirely by bottom 

friction. This allows equilibria of type Nl to remain of much weaker intensity than its 

anti-symmetric counterpart of type A, as Si is increased. Equilibria of type A, Nl, and 

N2 can be compared in Figure 2.4. One should note in particular how the non-symmetric 

equilibrium of type Nl are somewhat intensified in the western part of the basin, and 

much weaker than those of type A or N2. A further, and more dramatic example of 

the different vorticity balance achieved by non-symmetric equilibria of type Nl, can be 

observed in Figure 2.6, by comparing equilibria of type A, Nl, and N2. The multiple 

equilibria in this figure were computed for the same parameter values as those used 

in the time-dependent simulation of Marshall (1984), (Ss — 0.001, SH = 0.0313, and 

Si = 0.0316). The stream-function field labeled PBAR in Figure 2.6 is the time-average 

of a simulation of the time-dependent flow field. The equilibria of type Nl are unstable in 

this region of parameter space. The time-dependent flow field evolved in a complicated 

way with many strong eddies forming. Nevertheless, the integrated vorticity balance over 

the region of negative wind-stress curl is similar to that of time-averaged flow, provided 

the role of the eddy induced vorticity flux in the time-dependent case is replaced by the 

flux of vorticity across the line of zero wind-stress curl by stationary meanders in the 
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Figure 2.3: Parameter chart for 5H = 0.04, showing the bifurcations of the non-symmetric 
equilibria of type Nl. Solid lines denote saddle-node bifurcations, dashed lines indicate 
pitchfork bifurcations, and dotted lines indicate Hopf bifurcations. Equilibria of type Nl 
can be traced continuously for increasing values of 5r from the dashed curve (where they 
bifurcate from the anti-symmetric equilibrium), up to the saddle-node curve labeled SN 
or SN1 depending on whether Ss is to the right or left of the cusp point labeled CP1. 
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Figure 2.4: Typical %/; and q fields for the branches A,N1 and N2. 5/ = 0.1001, 5S = 0.02 
and 8H = 0.04. The contour interval is 0.3 for tp and 0.2 for q. The negative contours 
are dashed, and the zero contour is the thick one. 
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Figure 2.5: Bifurcation plot of ipmax + ipmin -vs- 5/, indicating the emergence of non- 
symmetric equilibria Nl and N2 and N3 via pitchfork bifurcations at 5j = 5PU 5P2, and 
SP3. A fourth pitchfork bifurcation point at 5t = SPA marks the disappearance of the 
non-symmetric equilibria of type N3. Anti-symmetric equilibria lie on the horizontal line 
in the center of the figure. Saddle-node bifurcation points at Sr = <551, SS2, and SSs, 
mark the merging of equilibria of type Nl with Nl1; Nlx with Nl2, and of type Nl2 with 
N2. The solid curves indicate equilibria which are stable and the dashed lines indicate 
equilibria which are unstable. (5S = 0.01, 8H = 0.04). 
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Figure 2.6: Contour plots of ^ for Sr = 0.0316, Ss = 0.001 and SH = 0.0313. Steady states 
of type A, NI, and N2 are presented along with the time-averages stream-function field 
(PBAR). The solid lines denote positive contours and the dashed lines denote negative 
contours. Contour intervals are as indicated. 

steady case. In the steady state solution, bottom friction removed only 4 percent of the 

vorticity input by the wind and in the time-mean state, bottom friction removed about 5 

percent of the vorticity input by the wind. Furthermore, the pair of fixed points of type 

NI are qualitatively similar to a typical instantaneous flow field of the time-dependent 

simulation. 

• For Ss > 0.0161 the non-symmetric equilibrium of type NI can be traced continu- 

ously up to a saddle-node bifurcation curve (labeled SN in Figure 2.3), where it merges 

with a fixed point of type N2 and ceases to exist.  At 5S = 0.0161, and <5/ = 0.090, a 
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fold catastrophe occurs (labeled CP1 in Figure 2.3), which leads to a wedge with two 

additional equilibrium states called type Nlx and Nl2. These additional equilibria will 

be described in Section 2.3.6. Furthermore, for 6S < 0.0161, i.e. for values of Ss to the 

left CP1, it is Nl2 that merges with N2 at SN. 

2.3.4    Non-Symmetric Equilibrium (type N2) 

In Figure 2.7, a parameter chart indicates the bifurcations associated with the non- 

symmetric equilibrium state of type N2. Typical non-symmetric stream-function and 

potential vorticity fields of type N2 were shown in Figure 2.4. As mentioned in Sec- 

tion 2.3.1, non-symmetric equilibria of type N2 come into existence via a pitchfork bi- 

furcation of the anti-symmetric equilibrium. This pitchfork bifurcation has its origin at 

the cusp point labeled CP in Figure 2.7. Equilibria of type N2 are always unstable. This 

branch can be traced continuously up to a saddle-node bifurcation point lying on the solid 

curve, where it merges with the equilibrium of type Nl and disappears. The pitchfork 

bifurcation and the saddle-node bifurcation can be seen in Figure 2.5 for 5S = 0.01. 

Near the cusp point in Figure 2.7, there is little difference between equilibria of type 

Nl and N2. In this region of parameter space a three term balance is achieved between 

the advection of planetary vorticity, advection of relative vorticity, and lateral diffusion. 

However, the vorticity balance integrated over the region of either positive or negative 

wind-stress curl is achieved primarily by bottom friction. As 5S is decreased, and 6/ 

is kept in the center of the shaded region in Figure 2.7, the equilibria of type Nl and 

N2 separate themselves through different balances. The non-symmetric equilibrium of 

type N2 is characterized by inertial gyres (J(I/J, V2V>) ~ 0), that extend across the basin. 

Again, the bottom friction term is unimportant in any local balance, but is nonetheless 

crucial in maintaining the global vorticity balance. This should be contrasted with non- 

symmetric equilibria of type Nl, where viscous effects are important locally in the region 

near the western wall, and where the inter-gyre boundary meets the western wall. 

44 



10u 

5iio1 

10' 
10' 10 

Figure 2.7: Parameter chart for 8H = 0.04, showing the bifurcations of the non-symmetric 
equilibrium (N2). Solid lines denote saddle-node bifurcations and dashed lines indicate 
pitchfork bifurcations. Equilibria of type N2 exist only in the shaded region of param- 
eter space where it is also always unstable. Non-symmetric equilibria of type N2 come 
into existence via a pitchfork bifurcation of the anti-symmetric flow, and can be traced 
continuously as Si is increased up to the solid curve labeled SN where it experiences a 
saddle-node bifurcation, merges with equilibria of type Nl, and ceases to exist. 
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2.3.5 Non-symmetric Equilibrium (type N3) 

Non-symmetric equilibria of type N3 exist inside the region bounded by the upper dashed 

lobe of Figure 2.1. Typical ip and q fields for the non-symmetric equilibria of type N3 and, 

for comparison, anti-symmetric equilibria are presented in Figure 2.8. Non-symmetric 

equilibria of type N3 come into existence via a pitchfork bifurcation of the anti-symmetric 

equilibrium. The equilibria is characterized by basin-filling inertial gyres with the inter- 

gyre boundary shifted either north or south, and tilted in the east-west direction. Both 

equilibria of type A and N3 are characterized by a quasi-inertial balance, the difference 

in the solution is restricted to their different symmetry properties. 

2.3.6 Non-Symmetric Equilibria (type Nli and Nl2) 

Non-symmetric equilibria of type Nli and Nl2 come into existence via a fold catastrophe 

of the solution branch of type Nl. In Figure 2.3, the region of parameter space where this 

fold takes place is denoted by the wedged shaped region emanating from the cusp point 

labeled CP1. Figure 2.9 shows typical contour plots of ip and q. These equilibria are 

characterized by strongly non-symmetric flow fields, with multiple circulation cells. The 

essential difference between equilibria of type Nl, Nli, and Nl2, is characterized by the 

geometrical arrangement of circulation cells within the basin. The integrated vorticity 

balance for the region of either positive or negative wind-stress curl is achieved primarily 

by stationary meanders transporting vorticity across the latitude of zero wind-stress curl. 

2.3.7 Dependence on Lateral Diffusivity Parameter, SH 

In this section, the role of the lateral diffusion parameter, 5H, in modifying the model's 

fixed points is explored. It is interesting to compare two sequences of anti-symmetric 

equilibrium solutions with alternate orderings of lateral friction and bottom friction layer 

thicknesses, i.e. 5H > Ss and 5S > 5H. In this section, computations with SH = 0.01 

were performed with Nx = 33, and Ny = 129, grid points on a grid stretched in the y 
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Figure 2.8: Typical ^ and <? fields for the branches Al and N3. Sj = 0.1127, Ss = 0.01 
and 5H = 0.04. The contour interval is 0.4 for ip and 0.3 for q. The negative contours 
are dashed, and the zero contour is the thick one. The non-symmetric branch N3 has its 
inter-gyre boundary shifted northward and tilted from west to east. 
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Figure 2.9: Typical ip and q fields for the branches Nl, Nl1; and Nl2, for 5/ = 0.1, 
6S = 0.02 and 5H ~ 0.04. The contour interval is 0.2 for ijj and 0.2 for q. The negative 
contours are dashed, and the zero contour is the thick one. The difference between 
the three equilibrium branches is essentially restricted to the spatial arrangement of the 
multiple closed circulation cells. 
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direction with with my = 0.25. See Appendix B for a definition of mx and my. The grid 

spacing in the x direction was uniform dx = 0.03, and in the y direction the grid spacing 

varied from a maximum of dy = 0.03 near the northern and southern basin walls, and 

a minimum of dy = 0.0031, near the line of zero wind-stress curl. The higher resolution 

and stretched grid are necessary to resolve the sharp gradient in the relative vorticity 

field that forms where the inter-gyre boundary meets the western wall. 

Figure 2.2 shows a sequence of anti-symmetric equilibria for increasing values of Sj 

with SH = 0.04 > 6s = 0.01 fixed. For this ordering of the friction parameters, the 

sequence of stream-function fields is similar to that computed by Ierley and Sheremet 

(1995) for the single-gyre case with Munk type lateral diffusion. Closed recirculation cells 

form near the western wall where the counter rotating gyres meet. The cells expand in 

size and strength as Si is increased, eventually filling the entire basin. 

Contrast this with Figure 2.10 which shows a similar sequence but with the alternate 

ordering in the thickness of the lateral and bottom friction layers, SH = 0.01 < 6$ = 0.04. 

In this case, the sequence of equilibria is similar to the sequence of solutions computed 

by Veronis (1966). The jet separating the northern gyre from the southern gyre increases 

in strength and penetrates progressively deeper into the interior as Si increases. The 

circulation pattern does not develop closed recirculation cells trapped near the western 

wall. The limit Sr -» oo, has basin-filling gyres similar to those for the case with SH > Ss, 

in the sense that they both have q versus ip scatter plots with negative slope. For the 

case of Ss > SH, there are however intermediate values of Sj for which the scatter plot of 

q vs. ip has positive slope. 

Finally, in comparing the single-gyre calculations of Veronis (1966), to the double- 

gyre calculations presented here, one should highlight the importance of the boundary 

condition experienced by the northern flank of the sub-tropical gyre. For a single-gyre 

calculation, there can be no flux of vorticity across the northern wall, which is not the 

case for the double-gyre calculations. This difference in boundary condition allows the 

northern jet to penetrate clear across the basin for either ordering of SH and Ss- Tight 
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Figure 2.10: Contour plots of tp (top row) and q (bottom row) for the anti-symmetric 
equilibrium (type A) with 8S = 0.04 and 5H = 0.01 and 5r as indicated. The dashed lines 
indicate the negative contours and the solid lines indicate the positive contours. The 
thick solid line indicates the zero contour. C.I. = 0.02 for ip and C.I. = 0.02 for q. 
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Figure 2.11: Contour plots of ip and q for the single-gyre case. The no-flux of vorticity 
across the northern wall allows the northern jet to penetrate straight across the basin. 
This should be compared with the double-gyre anti-symmetric equilibria computed for 
the same parameters (Figure 2.2, Si = 0.03). Ss = 0.01 and SH = 0.04 and Si = 0.03. 
C.I. = 0.02 for V and C.I. = 0.02 for q. 

recirculation cells trapped in the north western corner of the sub-tropical gyre can form 

only if SH > Ss and anomalously high potential vorticity is allowed to diffuse from the 

sub-polar gyre into the sub-tropical gyre. To demonstrate this, Figure 2.11 shows contour 

plots of the q and tp field for a single-gyre calculation with Si = 0.03, SH = 0.04 and 

Ss = 0.01. This single-gyre calculation should be compared with the double-gyre steady 

state equilibrium for the same parameter values (Figure 2.2). Incidentally, the single-gyre 

model with SH = 0.04 and Ss = 0.01 does not exhibit a saddle node bifurcation as Si is 

increased. This is different from the results of Ierley and Sheremet (1995). It is not clear 

whether their bifurcation occurs for different Ss and SH, or if the different dissipation 

operator and boundary condition prevent it from occurring in the present model. 

At least near the region of parameter space explored, the bifurcation structure leading 

to non-symmetric equilibria of type Nl and N2 does not depend qualitatively on the 

value of SH- Figure 2.12 shows a plot of max(ip) + minfy) (a measure of asymmetry) 

vs.   Si, for Ss = 0.04, and SH set at either = 0.04 (solid line), or 0.01 (dashed line). 
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Figure 2.12: Bifurcation plot of max^ + min0 -vs- 5/, indicating the emergence of non- 
symmetric equilibria of type Nl and N2, via pitchfork bifurcations for two different values 
of SH, (6H = 0.04 solid curve, 5H = 0.01 dotted curve), 6S - 0.04, and their disappearance 
at saddle-node bifurcations. 
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The plot shows the emergence of non-symmetric equilibria of type Nl and N2 as Si is 

increased. For SH = 0.01 the pitchfork bifurcations occur for slightly smaller values 

of 81 than they do for SH = 0.04. Also for the smaller value of SH, the saddle-node 

bifurcation, where the equilibria of type Nl and N2 merge, happens at a larger value of 

Si. The top row of Figure 2.13 shows contour plots of the ip field, and the bottom row 

shows contour plots of the q field as one moves around the nose from point marked 1 

through 5 in Figure 2.12. The sequence begins with the anti-symmetric equilibria at the 

location where Nl bifurcates from the anti-symmetric solution (location 1), continues 

with a typical non-symmetric equilibrium of type Nl (location 2), the non-symmetric 

equilibrium at the nose point NP where equilibria of type Nl and N2 merge (location 3), 

a non-symmetric equilibrium of type N2 (location 4), and ends with the anti-symmetric 

equilibrium at the point where equilibria of type N2 bifurcates from the anti-symmetric 

branch (location 5). Note that the tight recirculation cell that form near the western 

wall for the case SH > Ss are not present when S$ > SH- 

2.4    Overview of Bifurcation Structure 

It is useful to summarize the bifurcation structures described in the previous sections. In 

Figure 2.5, the difference in the extreme values of the magnitude of the stream-function 

field in the sub-polar and sub-tropical gyres (tpmax + Vw) is plotted as a function of 

Si. This bifurcation plot is taken along the left most edge of the parameter charts 

in Figures 2.1, 2.3, and 2.7, and thus includes all the bifurcations described in the 

previous sections. It illustrates the successive symmetry breaking bifurcations of the anti- 

symmetric branch. The anti-symmetric branch is marked by the horizontal line in the 

center of the plot. A pair of non-symmetric equilibria of type Nl emerges as Si is increased 

past the first pitchfork bifurcation point at Sp\. The pair of non-symmetric equilibria 

of type N2 emerges as Si is increased past the second pitchfork bifurcation at Sp2. The 

symmetry breaking equilibria of type N3 emerges as Sr is increased past the pitchfork 

53 



1 

0.5 

0 

0.5 

1  L 

r ir         ( 
Q r 

\ ■— 

0.5 

0       0.5        1      0        0.5        10       0.5        10        0.5        10       0.5        1 

Figure 2.13: Contour plots of ip (top row) and q (bottom row) around the nose point 
where the branches Nl and N2 merge. The solutions correspond to values of 5/ =0.07017, 
0.08041, 0.1429, 0.1245, 0.1087 and <55 =0.04. The first solution labeled Pf is close to the 
first pitchfork bifurcation. The second solution labeled Nl is a typical solution of type 
Nl. The third solution is close to the saddle-node bifurcation where Nl and N2 merge. 
The fourth solution is a typical solution of type N2, and the last solution is close to the 
second pitchfork bifurcation. The dashed lines indicate the negative contours and the 
solid lines indicate the positive contours. The thick solid line indicates the zero contour. 
C.I. = 0.02 for %l) and C.I. = 0.02. 

54 



bifurcation point at Sp3. As Si is increased past the fourth pitchfork bifurcation point 

at <5p4, the pair of non-symmetric equilibria of type N3 merges with the anti-symmetric 

branch and disappear. The plot also shows the saddle-node bifurcation point where the 

equilibria of type Nli and Nl2 are created, (Si = Ssi and <5s2), as well as the saddle-node 

bifurcation point (Si = £53) where the equilibria of type Nl2 and N2 merge. 

Figure 2.14 is a composite figure displaying an overlay of all the bifurcation curves. 

In each region of parameter space a pair of numerals indicates the total number of steady 

equilibria coexisting for the same parameter values and the number of those which are 

stable. For example (5,1) would imply that there are 5 equilibrium states one of which 

is stable. Regions with multiple stable equilibria are limited to those marked by (3,2) 

where the pair of equilibria of type Nl are stable, and the anti-symmetric equilibrium is 

unstable, as well as to the region denoted by (5,3) where the stable equilibria are of type 

A and Nl, and the unstable equilibria are of type N2. Regions with up to 11 unstable 

equilibria are identified in the figure. 

2.5    Discussion 

Using a continuation algorithm for finding both steady state solutions, and their cor- 

responding least stable eigenmode (or one unstable eigenmode if it exists), we mapped 

the bifurcation structure of the steady state solutions of a barotropic wind-driven ocean 

model as a function of the two nondimensional parameters — the inertial layer thickness, 

Si, and the Stommel layer thickness, Ss- One of the goals in carrying out these calcula- 

tions was to contribute to the broader objective of mapping the states of ocean models 

with a varying complexity of sub-grid-scale parameterizations, and boundary conditions. 

The model we used had bottom friction and lateral diffusion with super-slip boundary 

conditions. In this sense this study is a continuation of the work of Cessi and Ierley 

(1995). 
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Figure 2.14: Parameter chart for SH = 0.04 showing an overlay of the bifurcations for 
all the branches found. Solid lines denote saddle-node bifurcations, dashed lines indicate 
pitchfork bifurcations, and dotted lines indicate Hopf bifurcations. 
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2.5.1    Inertial runaway 

One solution branch (type A) can be traced continuously from the linear regime to the 

highly inertial regime. Like the forcing function, this branch is anti-symmetric about the 

mid-basin latitude. For sufficiently strong forcing or sufficiently weak bottom friction, the 

anti-symmetric solution tended towards a highly inertial circulation with transports far 

in excess of those predicted by Sverdrup balance. Apart from having unrealistically large 

transports, the inertial runaway solution shows no westward intensification. Furthermore, 

for all values of 5s explored, increasing 5f eventually leads to a region where the anti- 

symmetric steady state is stable, and apparently unique. A limited number of time- 

dependent calculations with parameters in the region labeled (1,1) in Figure 2.14 all 

converged to the anti-symmetric fixed point, regardless of the initial conditions used, 

suggesting that this fixed point is a global attractor at sufficiently large values of 5i. 

The stability of the anti-symmetric solution as 5j —> oo, should be contrasted with the 

stability results of Cessi and Ierley (1995), for the nonlinear Munk model with free-slip 

boundary conditions at the eastern and western walls. They found that for 5j —> oo and 

6M <C 1, where 6 M is the nondimensional Munk layer thickness, the only equilibrium 

is unstable, and has a single unstable eigenmode. The difference in stability between 

Cessi and Ierley's model and the one considered in this study can be attributed to the 

bottom friction term as opposed to the choice of lateral diffusion operator and boundary 

conditions. To verify this, some of the calculations of Cessi and Ierley were repeated with 

and without bottom friction. The calculations were carried out to values of 5[ as high 

as 300, with 5s = 0. The growth-rate of the unstable eigenmode remained positive but 

decreased monotonically. The computations were then repeated with the addition of a 

bottom friction term, with a finite value of 5s, and the unstable mode became stable for 

a sufficiently large value of 5r. 

Another difference between our results and those of Cessi and Ierley (1995), is the 

non-existence of a cusp catastrophe leading to multiple anti-symmetric equilibria. Recall 

that the model used here has bottom friction, lateral diffusion in the form of a biharmonic 
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operator acting on the vorticity, and super-slip boundary conditions which do not allow a 

flux of vorticity through the basin walls. We have investigated whether the choice between 

free-slip and super-slip boundary conditions as opposed to the form of the dissipation 

operator could be responsible for the existence of this cusp catastrophe. Using free-slip 

boundary conditions (C = V2C = 0 on dV) we deduced the existence of a cusp for Ss 

between 0.01 and 0.001. On the other hand, for the super-slip case, no cusp leading 

to multiple anti-symmetric equilibria exists for values of bottom friction greater than 

6S > 0.001. It is not clear if the cusp exists for smaller values of Ss and 5H, or if 

the super-slip boundary conditions truly prevents it from forming for any value of the 

dissipation parameters. Using a single-gyre model, Ierley and Sheremet (1995), found 

the cusp catastrophe when lateral diffusion and free-slip boundary conditions were used. 

However, they did not find the cusp catastrophe when bottom friction was used instead 

of lateral diffusion. A model with bottom friction alone does not allow vorticity to diffuse 

through the basin wall and is similar, in this sense, to a model with lateral diffusion and 

a super-slip boundary condition. Perhaps lateral diffusion of vorticity through the basin 

wall is an essential element to the dynamical balance that allows for the existence multiple 

anti-symmetric equilibria. Reducing bottom friction and holding lateral diffusion fixed 

at values of SH > 0.01 does not lead to a fold of the anti-symmetric branch. We have 

not, however, eliminated the possibility that a reduction of lateral diffusion would give 

rise to a fold in the anti-symmetric branch. 

2.5.2    Internal Compensation 

As already pointed out, for high boundary-layer Reynolds number, the anti-symmetric 

solution has a basin-filling inertial gyre with no western intensification and transports 

far in excess of those predicted from Sverdrup balance. As in the case of the single-gyre 

solutions found by Ierley and Sheremet (1995), a large eddy viscosity is needed for the 

model's anti-symmetric solution to have western intensification and a mass transport 

comparable to that observed in the real ocean.  Ierley and Sheremet (1995), point out 
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that a transfer of vorticity between adjacent gyres — a mechanism which is precluded 

in a single-gyre model — should reduce the need for a large eddy viscosity. Indeed, 

in idealized double-gyre models, the inter-gyre transfer of vorticity can be the primary 

mechanism by which the wind-stress curl vorticity input is balanced within each half of 

the basin as shown in Harrison and Holland (1981) and Marshall (1984). 

For double-gyre models that have no net input of vorticity over the entire basin, there 

is the possibility that the vorticity balance can be achieved internally without the need 

for vorticity to be fluxed through the basin walls or bottom. Cessi and Ierley (1995), 

have demonstrated that double-gyre models with anti-symmetric wind-stress curl profile 

admit non-symmetric solutions. We also found symmetry breaking pitchfork bifurcations 

leading to non-symmetric equilibria (type N1,N2,N3). Because of their non-symmetry 

with respect to the wind forcing, these solutions have currents which transport vortic- 

ity across the latitude of zero wind-stress curl. For these non-symmetric solutions, the 

input of vorticity by the wind-stress curl in each half of the basin is balanced in part 

by the export of vorticity by the current. This additional mechanism for removing vor- 

ticity lessens the burden on the explicit dissipation for balancing the vorticity budget. 

Consequently these solutions have weaker currents than the anti-symmetric solution. 

Figure 2.15 shows a plot of the difference between the maximum and minimum of the 

stream-function, a quantity proportional to the maximum transport in the basin, as a 

function of Sr. The solid curves correspond to equilibria that are stable and the dashed 

lines correspond to equilibria that are unstable. The crosses connected by the dotted 

line correspond to a series of time-averaged solutions. The initial condition for these 

simulations were the steady state of type Nl plus some random noise perturbation. One 

can see that the transport for the anti-symmetric solution (labeled A), is always higher 

than that of the non-symmetric solutions (labeled Nl, N2, and N3). The time-averaged 

solutions also show reduced transports compared to the anti-symmetric steady state so- 

lutions. In fact, the time-averaged transports are of a magnitude comparable to those 

of the non-symmetric branch of type Nl.  It appears that unstable fixed point of type 
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Figure 2.15: Maximum transport for steady state solution and time-averaged solutions 
as a function of Sr. Dotted lines with '+' indicate time-averaged solutions. Solid lines 
indicate stable steady state solutions and dashed lines indicate unstable steady state 
solutions. 6S = 0.01 and 6H = 0.04. 

Nl are close to a more complicated attractor which includes the model trajectories for 

which the time-averaged solutions were computed. Whether or not these fixed points are 

part of this attractor remains a conjecture since we have not attempted to compute more 

complicated orbits like limit cylces or homoclinic and heteroclinic orbits. 

The non-symmetric equilibria only exist for a finite range of parameters, between 

the first pitchfork bifurcation point labeled PF1 and the last turning point labeled SN. 

Beyond the turning point, all the computed model trajectories converged to the anti- 

symmetric inertial runaway solution. Even before the nose point is reached, some model 

trajectories asymptote to the stable anti-symmetric branch. In the regions labeled (5,1) 
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in Figure 2.14, it is the initial condition that determines whether the model trajectory 

fluctuates in some complicated manner in the neighborhood of the Nl fixed points or 

asymptotes to the stable equilibrium of type A, which is where, as already mentioned, 

all model trajectories converged for parameter values beyond SN. We can conclude from 

these results that inertial runaway is unavoidable as the boundary-layer Reynolds number, 

&i/Ss, becomes sufficiently large. 

Inter-gyre fluxes of vorticity prevent the time-averaged solution from developing un- 

realistically large transports, but they do not necessarily restore a Sverdrup type balance 

in the interior of the basin. Figure 2.16 shows a sequence of time-averaged stream func- 

tion and potential vorticity fields for 5[ between 0.055 and 0.1725. The duration of the 

averaging period ranged from 2500 nondimensional time units to 10000 nondimensional 

units. This corresponds to averaging periods of 4 to 16 years using the dimensional scales 

given in Section 2.2. As the forcing increases (increasing 8[) the western intensification of 

the solution decreases despite the fact that the solutions do not become highly inertial. 

Only close to the marginal stability curve does the time averaged solution retain some 

degree of western intensification. 
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Figure 2.16: Time-averaged stream-function (top row), and potential vorticity field (bot- 
tom row), for an increasing sequence of bj. Other parameters are held fixed at 5S = 0.01 
and 5H = 0.04. 
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Chapter 3 

Reduced Gravity Model 

3.1    Model Formulation 

In this chapter we will deal with the reduced gravity quasigeostrophic vorticity equation 

which can be written in terms of the interface anomaly, h: as follows 

(V2 - j2)ht + ßhx = -f 3(h, V2/i) - rV2h - AbW
6h + -A-CVLTW. (3.1) 

/o Pog'H 

The model describes the time evolution of the interface anomaly between two immiscible, 

homogeneous layers of fluid of slightly different densities. The lower layer is assumed to 

be infinitely deep and at rest. The mathematical model is the same as that described in 

McCalpin (1996) and McCalpin and Haidvogel (1996). 

The discretization of the model is achieved via second-order finite difference approx- 

imations, with a horizontal grid-spacing of 20 km. The time derivative is approximated 

using Scheme A described on page 153 of Haitiner and Williams (1980) with a time step 

of 0.5 days. 

The curl of the wind stress is given by 

curlf = ^ = ro^sin(27r^)(l - 4a(^ - \)). (3.2) 
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Figure 3.1: Wind-stress curl profile. The dashed curve (a — 0.0) is exactly anti- 
symmetric. The solid curve (a = 0.05) is non-symmetric with the peak of the wind-stress 
curl in the northern gyre decreased by 5% and the peak of the wind-stress curl in the 
southern gyre increased by 5%, relative to the anti-symmetric profile. 

The parameter a controls the north-south asymmetry of the wind-stress curl. Fig- 

ure 3.1 shows the wind-stress curl profile for a = 0.0 and a = 0.05. The domain of 

integration is a rectangular ocean basin confined to a region given by 

V = {(x, y) | 0 km < x < 3600 km, and 0 km  < y < 2800 km.}. (3.3) 

At the basin walls, the following boundary conditions are applied 

h = c(t), V2h = 0, and V4/i = 0. (3.4) 

The quantity c(t) is chosen such that the total mass in the upper layer remains constant. 

This is achieved by solving 

and 

V2hb - 72/i6 =0,    in V 

hb =   1,    on dV 

V2h0-j
2h0=   V2/i-7

2/i,    inP 

h0 =   0, on dV 

(3.5) 

(3.6) 
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and then choosing c(t) such that 

/ / h(x, y, t)dxdy= / / h0(x, y, t) + c(t)hb(x, y) dx dy = 0. (3.7) 

The numerical values for the parameters are the following: 

North-south extent of basin Ly = 2800 km, 

East-west extent of basin Lx = 3600 km, 

Upper layer thickness H — 600 m, 

Latitude of southern basin wall </>0 = 7r/6, 

Coriolis parameter /o = 1.4544 x 10_4cos(^0) s_1, 

Differential rotation of the earth ß = 2.2829 x cos(^>0) ni-1 s_1, 

Standard density p0 = 1.027 x 103 kg m~3, 
_ (3-8) 

Reduced gravity 5' = 0.02 m s 2, 

Rossby radius of deformation Rd = 47.636 km, 

Reciprocal of R^ 72 = (47636) "2 m"2, 

Strength of wind-stress control parameter r0 = 0.05 Nm~2, 

Wind-stress profile control parameter a = 0.05, 

Inter-facial damping coefficient r — 10~7 s_1, 

Biharmonic viscosity coefficient Ab = 8 x 1010 m4 s_1. 

3.2    Phenomenology 

To reproduce the phenomenology described by McCalpin and Haidvogel (1996), the 

model was run for more than 1800 years, saving the interface height field every 5 days. 

Figure 3.2(a), shows a 1500 year time series of the basin integrated total energy, and 

Figure 3.2(b) shows the corresponding time series of the eddy energy. It can be seen that 

periods of high eddy activity are associated with periods where the model is in a state 

of low total energy and conversely that periods of low eddy activity are associated with 

periods of high total energy. 
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Figure 3.2: (a) Time series of basin integrated total energy (potential plus kinetic) for 
a 1500 year segment of the time dependent simulation, (b) Time series of the basin 
integrated eddy-energy for the same period. See the text for a definition of eddy energy. 
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In computing the time-series, the total energy was expressed as 

TE[h(t)] = PE[h(t)] + KE[h{t)], (3.9) 

which is the sum of the potential energy, 

PE[h(t)} = l-pQg' jj h2(t) dx dy, (3.10) 

and the kinetic energy, 

KE[h(t)] = l-p,H H(u(tf + v(t)2)dxdy, (3.11) 

where 

u{t) = -^|"Ä(t), and v(t) = £|"M*)> (3-12) 
/ o dy jo Ox 

are the geostrophic velocities. 

The time series for the eddy energy was obtained by subtracting from the time-series 

of total energy the time-series of the energy computed from the field which was first 

low-pass filtered using a r = 6 months running average, 

_ _ ft+T/Z 

h  (t)= /        h(t)dt. (3.13) 
Jt+r/2 

The eddy or high-frequency energy is defined to be 

EE[h{t)} = TE[h{t)\ - TE[h T(t)]. (3.14) 

In Figure 3.3(a) we show the power density spectrum for the potential energy. We 

can see that the spectrum is red up to periods of 50 years. The bend in the spectrum at 

periods of 7 to 8 months is associated with the preferred period of eddy jet interactions. 

Figure 3.3(b) shows the potential energy power density spectrum multiplied by the 

frequency. We can see that most of the energy lies in a band between periods of 10 years 

and 100 years. Figure 3.4(a) shows the kinetic energy power density spectrum. The 

spectrum is red up to periods of 50 years, and is white for longer period. There is also 

a broad peak between periods of 6 months to 2 years. These features are difficult to see 
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Figure 3.3: (a) Potential energy power density spectrum with 95% confidence intervals, 
(b) Frequency x potential energy power density spectrum. 
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Figure 3.4:   (a) Kinetic energy power density spectrum with 95% confidence intervals, 
(b) Frequency x kinetic energy power density spectrum. 
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because of the scale of the Ordinate, but are nonetheless significant. Figure 3.4(b) The 

power density spectrum for the kinetic energy multiplied by the frequency (Figure 3.4(b)) 

shows that most of the kinetic energy variability occurs at periods between 3 months and 

100 years, and shows the peaks between 6 months and 2 years, between 2 years and 8 

years. For periods longer than 10 years the power density decreases. 

The model exhibits low-frequency variability associated with irregular transitions be- 

tween different dynamical regimes that persist for extended lengths of time. McCalpin 

and Haidvogel (1996) describe these regimes as follows: a high energy state with a large 

jet penetration scale and weak eddy/ring formation, a low energy state with a weakly 

penetrating jet and strong eddy/ring generation, and an intermediate or medium energy 

state with intermediate jet penetration and modest eddy/ring formation. They further 

describe these regimes as having time-averaged interface height anomaly fields and eddy 

energy fields which are remarkably similar from event to event, while being clearly distinct 

from one regime to the other. Figure 3.5 is reproduced from McCalpin and Haidvogel 

(1996) and shows contour plots of the averaged interface height anomaly for a high, 

medium and low energy regime. 

3.3    Multiple Equilibria 

For finite dimensional dissipative dynamical systems all solutions converge as t ->■ oo 

to a complicated set called the global attractor. It is sometimes the case that unstable 

fixed points of the dynamical system lie close to, or are contained in the global attractor 

(as in the case of the Lorenz attractor; Lorenz (1963)). When this is the case, there is 

the possibility that the recurrent regimes might be identified with the model's unstable 

fixed points. In general there is a stable and an unstable manifold associated with each 

fixed point. The unstable manifold is the nonlinear extension of the solution's unstable 

tangent space (i.e. the space spanned by the unstable eigenvectors of the model linearized 

about the fixed point). Almost all trajectories which begin in a neighborhood of the fixed 
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Figure 3.5: Time averaged interface anomaly fields from McCalpin and Haidvogel (1996). 
Upper left is for a 200 year record. Upper right is for a medium energy period. Lower 
left is for a high energy period and Lower right is for a low energy period. All frames 
employ the same contour interval of 20 m. The axis are horizontal distances in km. 
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point are eventually expelled along the unstable manifold. These trajectories can however 

sometimes return to the neighborhood of the fixed point by following a trajectory close 

to the stable manifold. In this sense the unstable fixed points act to "steer" the time 

dependent behavior (Legras and Ghil 1985). 

To test the possibility that unstable fixed points do indeed act to steer the model 

trajectories in McCalpin and Haidvogel's simulations, an arclength continuation method 

was used to search for the fixed points of the system. By first setting a to zero and 

gradually decreasing the biharmonic viscosity coefficient, Ab, the anti-symmetric solution 

branch was mapped from a linear viscous regime to the non-linear regime of McCalpin 

and Haidvogel's simulation. Recall that a is the parameter controlling the asymmetry of 

the wind-stress curl. Initially the wind-stress curl was kept anti-symmetric by setting a 

to zero so that any pitchfork bifurcation structure leading to multiple equilibria will not 

be destroyed (Jiang et al. (1995), Cessi and Ierley (1995)). For a different from zero the 

branches which would be connected at the pitchfork bifurcation point for a = 0, become 

disconnected and cannot all be found by continuously varying the viscosity coefficient. 

Once a solution on each of the distinct branches was found, the branches were extended to 

values of a different from zero. Furthermore, to reduce the computational costs, the fixed 

points were first calculated on a coarse grid. The need to resolve the sharp gradients in 

the potential vorticity field along the western wall, and in the inter-gyre regions requires 

the use of a stretched grid. Figure B.l in Appendix B shows the coarse computational 

grid with grid points concentrated along the western wall and the basin center. The grid 

spacing varies in the X direction from a minimum of 30 km along the western wall to 

a maximum of 90 km along the eastern wall, and in the Y direction, the grid spacing 

varies from a minimum of 30 km in the center of the basin to a maximum of 90 km along 

the northern and southern walls. The resolution used to compute each solution was then 

gradually increased to the final value of Ax = Ay = 20 km, - the same resolution used in 

the time-dependent simulation. Also see Section 3.3.12 for a discussion of the difficulties 

associated with interpolating steady state solutions onto successively finer grids. 
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3.3.1    Anti-symmetric Solutions: (a — 0.0) 

Starting from the linear viscous Munk like solution, the biharmonic viscosity coefficient, 

Ab, was gradually reduced to allow the steady state solution to become progressively more 

nonlinear. Figure 3.6 shows the maximum transport in the jet for the anti-symmetric 

solution as a function of the viscosity parameter. It also shows the location of the bi- 

furcation points about which will be further explained below. Recirculation cells appear 

when the biharmonic viscosity coefficient, Ab, is reduced to 1.5 x 1013 m4s-1. As it is fur- 

ther reduced, the recirculation cells intensify and expand eastward. With the increasing 

intensity of the recirculation cells, there is a sharp increase in the maximum transport 

across the jet until a maximum of 42 Sv is reached for Ab = 1.3 x 1012 m4s_1. When this 

maximum in the transport is reached, the recirculation cells extend 600 km eastward into 

the basin interior. A subsequent reduction in the viscosity causes the intensity of the 

recirculation cells to decrease, but their eastward extent continues to increase in a mono- 

tonic fashion until a saddle node bifurcation point is reached at Ab = 6.0 x 109 m4s_1. 

The low nose point associated with this bifurcation is labeled NPL in Figure 3.6. At 

this point the recirculation cells extend up to 180 km west of the eastern wall. To contin- 

uously follow the anti-symmetric solution, the viscosity must be increased from the low 

nose point, NPL, up to the high nose point, NPH, at Ab = 7.6 x 109 m4s_1. Once this 

second saddle node bifurcation is reached, the recirculation cells extend fully across the 

basin from the western wall to the eastern wall. A subsequent decrease in the viscosity 

coefficient causes the recirculation cells to expand in size in the north-south direction, and 

to intensify. This intensifying of the recirculation cells causes the maximum transport to 

increase again. 

In addition to the two saddle node bifurcations described above, eight successive 

symmetry breaking pitchfork bifurcations occur as the viscosity is decreased. They are 

labeled PFA, PFB, PFC, PFD, PFE, PFF, PFG, and PFH in Figure 3.6. In Figures 3.7 

to 3.16 the steady state solution at each of the ten bifurcation points (8 pitchforks + 2 

saddle nodes), as well as the corresponding null eigen-mode (i.e. the one with the zero 
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Figure 3.6: Plot of the maximum transport across the inter-gyre jet for the anti-symmetric 
solutions as a function of the biharmonic viscosity coefficient, Ab. Also shown is the 
location of the pitchfork bifurcation points, PFA, PFB, PFC, PFD, PFE, PFF, PFG, 
and PFH, as well as the location of two saddle node bifurcation points NPL and NPH. 
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eigenvalue) are contoured in the order in which they occurred as the pseudo-arclength 

was increased (see Appendix B for a definition of pseudo-arclength). At bifurcation 

points, one of the eigenmodes of the system linearized about the fixed point has a zero 

eigenvalue. This null mode captures the essential difference between the anti-symmetric 

fixed point at the bifurcation point and the new equilibria that come into existence as 

a result of the bifurcation. In the following sections each of the bifurcations are now 

discussed in turn. The following sections will show how each pitchfork bifurcations adds 

an additional half meander in the jet separating the recirculations cells. The meanders 

that occur up-stream where the jet is strongest have the longest wave-length, and those 

that occur down-stream have shorter wave-lengths. This suggests that the meanders 

might be understood in terms of damped stationary Rossby vaves. Further investigation 

along these lines is left for future work. 

3.3.2    First Bifurcation: PFA 

The first pitchfork bifurcation point, labeled PF^, (Ab = 4.1 x 1012 m4s_1), occurs shortly 

after the recirculation gyres form, when their eastward extent is only 400 km into the basin 

interior (Figure 3.7). The associated null eigen-mode is symmetric about the line of zero 

wind-stress curl (which must be the case for a symmetry breaking pitchfork bifurcation). 

The mode's structure consists of three counter rotating, gyres. The strongest is situated 

over the jet axis and extends 550 km into the basin interior. It is roughly pear shaped 

with its widest extent overlying the eastern most part of the recirculation gyres. To the 

north and south, and slightly to the west, it is flanked by counter rotating gyres. When 

the mode is superimposed on the basic state, it causes one of the recirculation cells to 

intensify and the other to weaken depending on the sign of the mode. The superposition 

also causes the recirculation cell pattern to shift either north or south with the weaker 

recirculation cell being pulled across the line of zero wind-stress curl by its stronger 

counter part. 
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Figure 3.7: (a) Contour plot of the interface height anomaly, h, (C.I. = 20 m) at the 
pitchfork bifurcation point PFA. (b) Contour plot of the null mode with the zero eigen- 
value responsible for the bifurcation (amplitude and sign are arbitrary), (c) Zoom in of 
interface height anomaly, (d) Zoom in of the null mode. 
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3.3.3    Second Bifurcation: PFB 

The second pitchfork bifurcation point, labeled PFB, (Ab = 5.7 x 10u m4s_1), occurs 

after the recirculation gyres have reached their maximum intensity and have begun to 

weaken. At the bifurcation point, the recirculation gyres extend eastward slightly more 

than 800 km (Figure 3.8). The associated null eigen-mode is again symmetric, and its 

structure consists of three counter rotating gyres. It has a maximum situated over the 

jet axis, in the same way that the null mode did for the bifurcation point PF^, but this 

time, the strongest of the three cells which is situated over the jet axis does not extend 

east of the recirculation gyres. Its eastern most edge coincides with the eastern most edge 

of the recirculation gyres. The structure of the mode in the region of the jet axis is tear 

shaped, and the zonal position of its maximum is nearly coincident with the maximum 

for the recirculation gyres. To the north and south, it is flanked by two weaker counter 

rotating gyres which wrap around the eastern edge of the tear shaped structure. When 

it is added to the basic state, it causes one recirculation cell to intensify and the other to 

weaken, depending on the sign of the mode. It also causes the jet to turn in the direction 

of the stronger recirculation cell after it separates from the western wall at the line of 

zero wind-stress curl. But unlike the null mode at PFA which caused the jet to turn 

fully on itself, this null mode causes the jet to turn eastward after moving away from line 

of zero wind-stress curl, and only then does it fan out to rejoin the Sverdrup interior. 
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Figure 3.8: (a) Contour plot of the interface height anomaly, h, (C.I. = 20 m) at the 
pitchfork bifurcation point PFB. (b) Contour plot of the null mode with the zero eigen- 
value responsible for the bifurcation (amplitude and sign are arbitrary), (c) Zoom in of 
interface height anomaly, (d) Zoom in of the null mode. 
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3.3.4    Third Bifurcation: PFC 

The third pitchfork bifurcation point, labeled PFc, (Ab — 2.4 x 1011 m4s_1), occurs when 

the recirculation gyres extend 1250 km eastward into the basin interior (Figure 3.9). The 

associated null eigen-mode again consistis of three counter rotating cells. The cell that is 

situated over the jet axis consists of an elongated structure with two local maximums at 

650 km and 1250 km. The saddle point separating the maximums is situated at 1100 km 

on the jet axis, so that the "bump" associated with the first maximum is 1100 km long, 

and the one associated with the second maximum is only 400 km long since this mode does 

not extend past 1500 km. Like the null mode associated with the bifurcation PFA, the 

null mode at PFc has a pear shaped structure that extends eastward of the region where 

the jet begins to fan out to rejoin the Sverdrup interior. The other two cells are situated 

to the north and south and are positioned over the westward recirculating currents. When 

the mode is superimposed on the basic state it causes one of the recirculation cells to 

intensify and the other to weaken depending on the sign of the mode. It also shifts the 

jet axis either north or south in the direction of the stronger recirculation gyre. The 

mode also causes a meander in the jet. After separating from the coast at the line of zero 

wind-stress curl, the perturbed jet turns in the direction of the stronger recirculation, 

then turns eastward again, and finally turns back to the line of zero wind-stress curl, 

before fanning out to rejoin the Sverdrup interior. 
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Figure 3.9: (a) Contour plot of the interface height anomaly, h, (C.I. = 20 m) at the 
pitchfork bifurcation point PFC. (b) Contour plot of the null mode with the zero eigen- 
value responsible for the bifurcation (amplitude and sign are arbitrary), (c) Zoom in of 
interface height anomaly, (d) Zoom in of the null mode. 
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3.3.5    Fourth Bifurcation: PFD 

The fourth pitchfork bifurcation point, labeled PFD, (At, — 1.2 x 1011 m4s_1), occurs 

when the recirculation gyres extend 1750 km eastward into the basin interior (Fig- 

ure 3.10). For the most part, the associated null mode is similar to the null mode 

associated with the bifurcation point PFc- It is anti-symmetric and composed of three 

cells, with the cell overlying the jet axis having two relative maxima. Like the null mode 

for PFc, the first maximum is slightly to the east of the center of a 1100 km long "bump". 

The eastern part of the mode however is most like the null mode associated with the bi- 

furcation PFB- It has a structure which is tear shaped and is nearly coincident with 

the location of maximum transport in the jet. The second maximum is 72 % as intense 

as the first. Like the null mode for PFB, the two counter rotating gyres wrap around 

the anomaly that is situated over the jet axis. Also like the null mode associated with 

PFB, but unlike the modes associated with PF& and PFc, this mode's eastern most 

edge coincides with the eastern most edge of the basic states' recirculation gyres. When 

this mode is superimposed on the basic state it causes the jet to shift either southward 

or northward depending on the sign of the mode. It also causes the jet to meander in a 

similar way that the null mode of PFc forces the jet to meander, except that the jet turns 

one additional time away from the line of zero wind-stress curl before turning eastward 

and fanning out to rejoin the Sverdrup interior. 

81 



Steady state at PFD (Ab: 1.2e+11) Null eigenmode at PFr 

Steady state at PFD (Afa =   1.2e+11) 

2000 

2500 

2000 

. 1500 

1000 

500 

0 

 \  

1000 2000 
X 

3000 

Null eigenmode at PF_ 

2000 

Figure 3.10: (a) Contour plot of the interface height anomaly, h, (C.I. = 20 m) at the 
pitchfork bifurcation point PFD. (b) Contour plot of the null mode with the zero eigen- 
value responsible for the bifurcation (amplitude and sign are arbitrary), (c) Zoom in of 
interface height anomaly, (d) Zoom in of the null mode. 
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3.3.6    Fifth Bifurcation: PFE 

The fifth pitchfork bifurcation point, labeled PFE, (Ab = 6 x 1010 m4s_1), occurs when 

the recirculation gyres extend 2100 km eastward into the basin interior (Figure 3.11). The 

null mode associated with this bifurcation point has a dominant structure with three local 

maximums overlying the jet axis. The saddle points separating the three "bumps" are 

situated at 1150 km and 2100 km. The third and eastern most bump extends from the 

second saddle point up to 2400 km. The first "bump" is 1150 km long. The second 

is 1050 km long, and the third is 300 km long. The second maximum has an intensity 

which is 82% of the first, and the third has an intensity which is 30% of the first. To the 

north and south, the null mode has two counter rotating gyres which extend from the 

western wall up to the same zonal position as that of the maximum for the third bump. 

These cells have maximums near 2100 km, the same zonal position as that of the second 

saddle point separating the second and third bump. The eastern structure of this mode 

is similar to the null modes associated with the bifurcation points PFA and PFC. Like 

the modes for those previous bifurcations, the eastern most structure is pear shaped and 

extends to the east of the recirculation gyres. When this mode is added to the basic state 

its effect is similar to that of the null mode associated with PFc except that the jet has 

an additional meander. 
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Figure 3.11: (a) Contour plot of the interface height anomaly, h, (C.I. = 20 m) at the 
pitchfork bifurcation point PFE. (b) Contour plot of the null mode with the zero eigen- 
value responsible for the bifurcation (amplitude and sign are arbitrary), (c) Zoom in of 
interface height anomaly, (d) Zoom in of the null mode. 
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3.3.7    Sixth Bifurcation: PFF 

The sixth pitchfork bifurcation point, labeled PFF,(Ab = 2.8 x 1010 m4s_1) , occurs when 

the recirculation gyres extend approximately 2500 km eastward into the basin interior 

(Figure 3.12). The null mode associated with this bifurcation has a similar structure 

to the mode associated with PFp, except that three instead of two local maxima exist 

on the cell which is situated over the jet axis. The first saddle point separating the 

maxima is situated at 1200 km and the second at 2150 km. The eastern structure of 

the mode has the familiar tear shaped structure also present for the null modes of PFB 

and PFD. Like those previous bifurcations the tear shaped structure does not extend 

past the recirculation gyres of the basic state. The mode also has the familiar counter 

rotating cells to the north and south which wrap around the most eastern extent of the 

structure. 
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Figure 3.12: (a) Contour plot of the interface height anomaly, h, (C.I. = 20 m) at the 
pitchfork bifurcation point PFF. (b) Contour plot of the null mode with the zero eigen- 
value responsible for the bifurcation (amplitude and sign are arbitrary), (c) Zoom in of 
interface height anomaly, (d) Zoom in of the null mode. 
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3.3.8    Seventh Bifurcation: PFg 

The seventh pitchfork bifurcation point, labeled PFG: (Ab — 1.3 x 1010 m4s_1), occurs 

when the recirculation gyres extend approximately 3000 km eastward into the basin inte- 

rior. The null mode associated with this bifurcation is similar to the null mode associated 

with the bifurcation PFE, except that this mode causes one additional meander in the 

jet when it is added to the basic state. Also different from all the previous modes, the 

bumps on the cell overlying the jet axis are separated by small valleys instead of saddle 

points. A further difference is that this mode causes the meanders in the jet to overshoot 

the line of zero wind-stress curl when it is added to the basic state. This difference might 

be due to the fact that the null mode feels the presence of the eastern wall which lies 

less than 100 km to the eastern edge of the last cell on the jet axis. The intensity of 

the co-rotating cells on the jet axis decreases downstream such that the intensity of the 

second cell is 72% that of the first, the intensity of the third is 68% of the first, and 

that of the fourth is 32% the intensity of the first. The intensity of the weaker counter 

rotating cells increases downstream such that the intensity of the first, second, third and 

fourth "valley" is 7%, 8%, 12% and 15% the intensity of the strongest "bump". 
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Figure 3.13: (a) Contour plot of the interface height anomaly, h, (C.I. = 20 m) at the 
pitchfork bifurcation point PFG. (b) Contour plot of the null mode with the zero eigen- 
value responsible for the bifurcation (amplitude and sign are arbitrary), (c) Zoom in of 
interface height anomaly, (d) Zoom in of the null mode. 
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3.3.9    Eight and Ninth Bifurcations: NPL and NPH 

The next two bifurcation points are saddle nodes associated with the interaction of the 

jet and the eastern wall. The first, NPL, is the low nose point which occurs when the 

jet reaches the eastern wall at Ab = 6.0 x 109 m4s_1 (Figure 3.14). The associated null 

eigen-mode is anti-symmetric like the basic state, and consists of two counter rotating 

cells trapped near the eastern wall in the region where the streamlines in the jet fan 

out. The second saddle node bifurcation point (Figure 3.15) is labeled NPH, and is 

the high nose point. It occurs for Ab = 7.6 x 109 m4s_1. The associated eigen-mode is 

anti-symmetric and consists of two counter rotating cells which are most intense near 

the eastern wall, but which extend westward up to the western wall. When the mode is 

added to the basic state it causes the recirculation gyres to expand or recede northward 

and southward, depending on the sign of the mode. 
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Figure 3.14: (a) Contour plot of the interface height anomaly, h, (C.I. = 20 m) at the low 
nose point NPL. (b) Contour plot of the null mode with the zero eigen-value responsible 
for the bifurcation (amplitude and sign are arbitrary), (c) Zoom in of interface height 
anomaly, (d) Zoom in of the null mode. 
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Figure 3.15: (a) Contour plot of the interface height anomaly, h, (C.I. = 20 m) at the high 
nose point NPH. (b) Contour plot of the null mode with the zero eigen-value responsible 
for the bifurcation (amplitude and sign are arbitrary), (c) Zoom in of interface height 
anomaly, (d) Zoom in of the null mode. 
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3.3.10    Tenth Bifurcation: PFH 

The eighth pitchfork bifurcation point, labeled PFH , (Ab = 1.3 x 1010 mV1), occurs 

after the jet extends across the basin, and the recirculation cells have begun to expand 

northward and southward (Figure 3.16). The null mode associated with the bifurcation 

consists of 4 co-rotating cells separated by very weak counter rotating cells which all lie 

on the jet axis. The three valleys separating the four local maximums are situated near 

1300 km, 2300 km, and 3200 km. The second maximum is 60% as strong as the first, 

the third is 50% as strong as the first and the third is 35% as strong as the first. When 

the mode is superimposed on the basic state it causes the jet to shift either northward 

or southward depending on the sign of the mode. It also causes the jet to have four 

meanders of length 1300 km, 1000 km, 900 km and 400 km. 
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Figure 3.16: (a) Contour plot of the interface height anomaly, h, (C.I. = 20 m) at the 
pitchfork bifurcation point PFJJ- (b) Contour plot of the null mode with the zero eigen- 
value responsible for the bifurcation (amplitude and sign are arbitrary), (c) Zoom in of 
interface height anomaly, (d) Zoom in of the null mode. 
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3.3.11    Non-symmetric Solutions: (a = 0.0) 

Four of the eight symmetry breaking pitchfork bifurcations discussed above occurred for 

values of Ab less than 8 x 1010m4s_1, so that for Ab = 8 x lO^mV1 (the value used 

by McCalpin and Haidvogel (1996)) and a = 0.0, there exists 9 distinct steady state 

solutions - one which is anti-symmetric and four pairs of solutions which have the same 

symmetry as the model, tp(x,y - Ly/2) = -Tp(x, -(y - Ly/2)). 

Figure 3.17 shows a plot of energy as a function of the biharmonic viscosity coef- 

ficient Ab. The plot also shows the non-symmetric branches which have bifurcated at 

the symmetry breaking pitchfork bifurcations PFA, PFB, PFC, and PFD. Since the 

wind-stress curl profile for a = 0 is exactly anti-symmetric, the members of each pair of 

non-symmetric equilibria have the same energy and thus fall on overlapping curves which 

are labeled (AkA1, BkB', CkC, and DkD'). The range between Ab = 1015m4/s and 

Ab = 1013m4/s in which the energy of the flow remains essentially constant corresponds 

to the range of parameters where the flow is essentially linear with Sverdrup balance 

everywhere in the interior of the basin except for a thin western boundary layer of thick- 

ness 5H = (Ab/ß)1/5. For Ab near 1013m4/s, recirculation cells form in the region where 

the western boundary currents from the sub-tropical and sub-polar gyres meet. As the 

biharmonic diffusivity is further decreased, the total energy of the anti-symmetric branch 

increases rapidly. This rapid increase in energy is accompanied by a rapid increase in 

the zonal extent of the recirculation cells. As the recirculation cells continuously expand 

in the zonal direction they allow the successive pitchfork bifurcations to occur. Each 

pair of new equilibria has an additional half meander in the part of the jet separating 

the counter rotating recirculation gyres. Thus equilibria A and A' simply turn back on 

themselves, one to the north and the other to the south. Equilibria, B and B' first turn 

north or south, and then turn seaward before fanning out to rejoin the Sverdrup interior. 

Equilibria C and C" add half an additional meander, and so on for D and D'. In contrast 

to the anti-symmetric branch, the energy level for the non-symmetric branches AkA1', 

BkB', CkC, and DkD' decreases or remains nearly constant (Figure 3.17). For these 
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Figure 3.17: Plot of total energy divided by (TE) for a = 0 as a function of the lateral 
diffusion parameter Ab- The dashed vertical line at Ab = 810 gives the value of lateral 
diffusion used in the time dependent simulation. The circles indicate the bifurcation 
points for the anti-symmetric branch. The branches labeled Ak.A', B&B', C&C, and 
Dk,D' are for non-symmetric solutions. The anti-symmetric branch is the one that exists 
for all parameter values. The anti-symmetric branch would become E' at Ab = 8 x 1010 

if a = 0.05. 
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non-symmetric solutions, large inter-gyre fluxes of vorticity allow the solutions to remain 

balanced. The recirculation cells do not need to expand in size to allow the explicit dissi- 

pation to remove the excess vorticity which would otherwise have been dissipated in the 

western boundary layer, or more efficiently across the jet axis by a larger lateral diffusion 

parameter. The gyre integrated vorticity budget is further discussed in Section 3.3.13 

below. 

3.3.12    Non-symmetric Solutions: (a = 0.05) 

As a was increased from 0.0 to 0.05 the branch labeled A in Figure 3.17 turned (i.e. 

underwent a saddle node bifurcation) before a could be increased to 0.05. All the other 

branches, however, could be traced continuously from a = 0.0 to 0.05 . Thus, 8 distinct 

steady state solutions were found for the parameter values used in the time-dependent 

simulation. Contour plots of the layer thickness and potential vorticity field for each 

of the equilibrium states computed on a uniform grid with 20 km resolution are shown 

in Figures 3.18 through 3.25. Most of these solutions were obtained on the fine grid 

by successively interpolating the coarse resolution solution onto a grid with a few more 

grid points, performing several Newton correction steps, and repeating the process until 

the desired resolution was obtained. However, for the non-symmetric solutions A, A', 

B, and B', which are on branches which have turning points for values of Ab less than 

8 x 1010 mV1, (see Figure 3.17), Newton's method did not always converge even when 

only one grid point was added at a time. For those branches solutions at higher values of 

the biharmonic viscosity had to be interpolated onto successively finer grids for Newton's 

method to converge. The high resolution branches could then be traced back to the lower 

values of the viscosity. 

The solution labeled E' is from the solution branch which would be anti-symmetric 

if the wind-stress-curl profile was exactly anti-symmetric, i.e. if a = 0.0. We label it E' 

because for a ^ 0, the pitchfork bifurcation is destroyed and the branch connects to the 

.E'-branch without going through a bifurcation point. The pair of equilibria labeled D 
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Figure 3.18: Potential vorticity field (top, C.I. 3.1 x 10 5 ) and interface height anomaly 
(bottom, C.I. 20 m) for fixed point A. 
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Figure 3.19: Potential vorticity field (top, C.I. 3.1 x 10"5 ) and interface height anomaly 
(bottom, C.I. 20 m) for fixed point B. 

98 



B': Potential Vorticity (q) 
2800 

c  ■    :    : 
2450 h    : :    : :  

.   - 
2100 

1750 h^Wl\\C^ .r^sT^. •. ~       - |W\^\^^ r ? 
-p 
Jjj 1400 ^|X%wf^r\\ \^/~\   ^<^ 

Iwna W^^:-:' 1050 

■1               '^/   's   /    //\     -^\        - 
700 

350 i .: : ; ; : : ;  K    \       \       \      \       \       \       \ 
i                         i                          i                         i                         i                          i                          i 

0    450   900   1350  1800  2250  2700  3150  3600 
(km) 

2800 
B': Interface Anomaly (h) 

0    450   900   1350  1800  2250  2700  3150  3600 
(km) 

Figure 3.20: Potential vorticity field (top, C.I. 3.1 x 10 5 ) and interface height anomaly 
(bottom, C.I. 20 m) for fixed point B'. 
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Figure 3.21: Potential vorticity field (top, C.I. 3.1 x 10"5 ) and interface height anomaly 
(bottom, C.I. 20 m) for fixed point C. 
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Figure 3.22: Potential vorticity field (top, C.I. 3.1 x 10~5 ) and interface height anomaly 
(bottom, C.I. 20 m) for fixed point C. 
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Figure 3.23: Potential vorticity field (top, C.I. 3.1 x 10~5 ) and interface height anomaly 
(bottom, C.I. 20 m) for fixed point D. 
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Figure 3.24: Potential vorticity field (top, C.I. 3.1 x 10-5 ) and interface height anomaly 
(bottom, C.I. 20 m) for fixed point D'. 
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Figure 3.25: Potential vorticity field (top, C.I. 3.1 x 10~5 ) and interface height anomaly 
(bottom, C.I. 20 m) for fixed point E'. 
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and D' are from the branches which bifurcated at a value of the viscosity closest to that 

used in the time-dependent simulation. The equilibria C and C bifurcated at a larger 

value of viscosity, and the pair B and B' bifurcated at a yet larger value of viscosity. 

Finally equilibrium A is from one of the two branches that bifurcated at the largest value 

of viscosity. The equilibrium A' is the one that could not be traced continuously to a 

value of a = 0.05. 

The major difference in the structure of the flow fields among the various pairs of 

equilibria lies in the extent of penetration of the jet into the interior, and in the degree 

to which the streamlines in the jet meander before rejoining the Sverdrup interior. Both 

these features will be revisited in Section 3.3.15 where we examine the q — if) relationship 

in the jet. At the bifurcation points, all the flow fields are exactly anti-symmetric. The 

amount of meandering and wave activity increases continuously for the non-symmetric 

branches as the viscosity is continuously decreased from its value at the bifurcation 

point. The penetration scale of the jet on the other hand increases only slightly for 

the non-symmetric branches as the viscosity coefficient is similarly decreased. Compare 

Figure 3.7 which show the jet which penetrates only 400 km at the bifurcation point 

PFA, and Figure 3.18 which shows the non-symmetric equilibria, A, after the viscosity 

has been reduced from 4.1 x 1012 m4s_1 to 8.0 x 1010 m4s_1 to see that the jet penetrates 

no more than 450 km before it begins to fan out. Similarly equilibrium B penetrates 

800 km at its bifurcation point (Ab = 5.7 x 1011 m4s-1) and also around 800 km when 

Ab is reduced to 8.0 x 1010m4s-1. For equilibrium C the jet penetrates 1250 km at 

both its bifurcation point (A* = 2.4 x 1011 mV1) and at Ab = 8.0 x 1010 mV1. For 

equilibrium D the jet penetrates up to 1800 km at both its bifurcation point (Ab = 

1.2 x 1011 m4s_1) and at Ab = 8.0 x 1010 m4s-1. In comparison, the anti-symmetric 

equilibrium has a jet and recirculation cells whose penetration scale increases rapidly as 

the viscosity coefficient is decreased. Figure 3.25 shows the nearly anti-symmetric branch 

with a jet which penetrates more than 2000 km into the interior before fanning out while 

the jet penetrated only 400 km at the first pitchfork bifurcation PFA- Consistent with 
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this behavior, the pairs of equilibria which bifurcated at the highest values of viscosity 

generally have a jet with strong meandering but with only weak penetration into the 

interior. On the other hand, the solution branch E' and the pairs of equilibria which have 

bifurcated at the lower values of viscosity have a jet with little meandering but which 

penetrates strongly into the interior (see Section 3.3.15). All the solutions are identical in 

the region away from the recirculation region where they are either in Sverdrup balance, 

or in an inertial balance with the streamlines entering the western boundary layer. 

The meandering of streamlines across the line of zero wind-stress curl (Figures 3.18 

through 3.25), has important consequences for both the energy and vorticity budgets of 

the steady state solutions, which we now address in more detail. 

3.3.13    Global Vorticity Balance 

In this section we look at global vorticity budgets for each gyre. If the streamline sep- 

arating the sub-polar from the sub-tropical gyre is not coincident with the line of zero 

wind-stress curl, the circulation can advect negative vorticity into a region of positive 

wind-stress curl and vice-versa. We can think of this advection of vorticity as an inter- 

gyre flux of vorticity provided we define the gyres to be the regions occupied by the 

sub-tropical and sub-polar gyres of the linear Munk-like solution. From this point of 

view, the region occupied by the gyres is fixed, and consequently, the vorticity input by 

the wind-stress curl is also fixed. Tables 3.1 and 3.2 give the gyre integrated vorticity 

budget for the sub-tropical and sub-polar gyres respectively. The advection terms in the 

vorticity equation cannot generate any vorticity; they act to only redistribute it. Thus 

any net basin integrated input of vorticity by the wind must be removed by the explicit 

friction terms. For the configuration used in this chapter, with a = 0.05, the net input of 

vorticity by the wind in the sub-tropical gyre is -2.23 x 10~3 s~2, and for the sub-polar 

gyre it is 2.0177 x 10-3 s-2. The sub-tropical gyre receives 5% more vorticity from the 

wind than the sub-polar gyre. 

Tables 3.1 and  3.2, show that the inter-gyre flux of vorticity is crucial for equilibria 

106 



A, B and B' which are the first to bifurcate. Since these equilibria are furthest in 

parameter space from their bifurcation points, they are the least anti-symmetric. Also, 

the solutions B', C, and D', which have a jet that first turns south after separating from 

the western wall have weaker inter-gyre fluxes of vorticity than their nearly mirror image 

counterparts B, C and D which have a jet which first turns north. This asymmetry is 

due to the weaker/stronger vorticity input in the sub-polar/sub-tropical gyre. 

The dominant explicit dissipation term in the vorticity equation is the biharmonic 

viscosity. It generally becomes more important for the more anti-symmetric solution; 

although the relative differences are small compared with the changes in the advection and 

bottom friction terms. The sink of vorticity through lateral diffusion is generally stronger 

for the unprimed solutions. This, along with the weaker inter-gyre flux of vorticity 

for the unprimed solutions increases the importance of bottom drag for removing the 

excess vorticity. To compensate for the weaker inter-gyre flux of vorticity, the more anti- 

symmetric solutions dissipate much more vorticity through bottom friction than do the 

more non-symmetric solutions. For example, bottom friction is 44% more important for 

solution E' than it is for solution C. It can also be noticed that for the primed solutions, 

bottom friction is always stronger than for the unprimed counter parts. This is consistent 

with the weaker inter-gyre vorticity flux, and weaker lateral diffusion. Interestingly, the 

time dependent trajectory is most like the primed solution, with a quasi-permanent 

southward meander shortly after the jet separates from the coast. 

3.3.14    Global Energy Balance 

In addition to having different flow fields, each equilibrium state has a different energy 

level. The difference in the energy level maintained by each state is due to the fact that 

both the energy dissipation and the energy input by the wind stress are a function of the 

flow field. The energy input by the wind-stress is given by the correlation between the 
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Solution Vorticity input Bottom dissipation Lateral diffusion Advection 
(10~V2) (10-V2) (10-V2) (10-V2) 

Linear -2.2300 -0.5248 -1.7052 -0.0000 
A -2.2300 -0.3411 -0.8845 -1.0044 
B -2.2300 -0.3513 -0.8603 -1.0184 
B' -2.2300 -0.3904 -0.9431 -0.8965 
C -2.2300 -0.3138 -0.9001 -1.0161 
a -2.2300 -0.4492 -0.9838 -0.7970 
D -2.2300 -0.3270 -0.9087 -0.9943 
D' -2.2300 -0.6193 -0.9560 -0.6547 
E' -2.2300 -0.7051 -0.9130 -0.6120 

Table 3.1: Integrated vorticity budget for sub-tropical gyre. 

Solution Vorticity input Bottom dissipation Lateral diffusion Advection 
(10-V2) (10-V2) (10-V2) (10-V2) 

Linear 2.0177 0.4757 1.5420 0.0000 
A 2.0177 0.2879 0.7254 1.0044 
B 2.0177 0.2934 0.7058 1.0184 
B' 2.0177 0.3405 0.7807 0.8965 
C 2.0177 0.2471 0.7545 1.0161 
C 2.0177 0.3997 0.8209 0.7970 
D 2.0177 0.2602 0.7632 0.9943 
D' 2.0177 0.5653 0.7976 0.6547 
E' 2.0177 0.6454 0.7603 0.6120 

Table 3.2: Integrated vorticity budget for sub-polar gyre. 
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Solution Energy level Energy input Energy dissipation Energy dissipation 
by wind-stress by bottom drag by lateral diffusion 

(1017J) (109W) (109W) (109W) (109W) 
Linear 2.5507 4.5390 2.1556 2.3869 

A 2.8984 4.3582 3.5245 0.8368 
B 2.8088 4.3302 3.4719 0.8626 
B' 2.8537 4.3494 3.5089 0.8438 
C 3.7917 4.6751 3.7974 0.8820 
C 3.8917 4.6982 3.8193 0.8822 
D 4.3345 4.9151 4.0246 0.8944 
D' 4.2287 4.8585 3.9655 0.8965 
E' 4.4679 5.0057 4.1048 0.9047 

Table 3.3: Basin-integrated energy balance for each equilibrium. 

curl of the wind-stress and the stream function field 

1    Qn rr F=öA>72 // ~hV xrdxdy. 
I    j0 J J 

The energy dissipation due to inter-facial drag is given by 

Dr = 0P072 // hrV2hdxdy, 
Z     Jo J J 

and the energy dissipation due to lateral diffusion is given by 

DA„ = j A) j2 ff hAbV
6h dx dy. 

(3.15) 

(3.16) 

(3.17) 

Table 3.3 lists the basin integrated energy balance for each solution. There is a 37% 

difference in the energy level of equilibrium B, which has the lowest energy and equilib- 

rium £", which has the highest energy. The input of energy by the wind-stress varies by 

13 % between these two equilibria. The energy dissipation by bottom friction varies by 

15% between equilibrium B and equilibrium E' while the energy dissipation by lateral 

diffusion varies only by 4.7%. The larger relative difference between the bottom dissi- 

pation for equilibria B and E' reflects the fact that equilibrium E' has a much higher 

energy level than equilibrium B. The difference in bottom friction, however, is not so 

large as the difference in the total energy level. Most of the difference in the energy levels 
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can in fact be attributed to differences in the potential energy while bottom dissipation 

is proportional to the kinetic energy. For comparison, Table 3.3 also gives the energy 

balance for the linearized model. For this solution, lateral diffusion accounts for more 

than half the energy dissipation. Since there are no inertial effects for the linearized 

model, all streamlines pass through the frictional boundary layer. The absence of iner- 

tial effects also prevents recirculation cells from forming, thereby eliminating important 

regions where bottom friction dissipates energy. 

3.3.15    Zonal Jet Penetration 

The most striking difference between the multiple equilibria is the extent of the jet 

penetration into the basin interior and the amount of meandering by the streamlines. 

The issue of the zonal penetration scale of mid-latitude oceanic jets is an interesting 

problem in its own right. Holland and Schmitz (1985), Greatbatch (1988), Marshall 

and Marshall (1992), among others have addressed the problem of what sets the zonal 

penetration scale of mid-latitude jets in ocean models. Marshall and Marshall as well as 

Greatbatch argued that for free jets with q = F(ip), the sign of dq/dip controls whether 

the jet strikes seaward or turns back on itself. They drew an analogy between two 

analytic free solutions of the barotropic vorticity equation, the modon and the Fofonoff 

mode, and the penetration characteristic of a free mid-latitude jet. Both the modon 

and the Fofonoff mode have linear q - ip relationships. The modon with dq/dip < 0 

has a circulation which is confined by a bounding streamline beyond which there is no 

flow. The Fofonoff mode on the other hand, has dq/dip > 0 and a circulation that fills 

the entire basin. Based on these analogies, Marshall and Marshall (1992), went on to 

perform a series of numerical experiments in which they controlled the q - ip relationship 

for the jet by specifying inflow conditions, and showed that indeed, when the prescribed 

inflow conditions had dq/dip < 0, the jet turned back on itself and when dq/dip > 0, the 

jet penetrated across the basin reaching the eastern wall. Based on these experiments, 

they proposed the theory that the different penetration scale for the mid-latitude jets in 
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different models can be explained by the different sign of dq/dip. 

From the steady state solutions presented in this chapter, it is however possible to 

state that the theory of Marshall and Marshall (1992) is incorrect. In fact, the solutions 

found here have jets with very different penetration scale while having nonetheless similar 

q — ip relationships.   For free solutions, V<? and V^ are parallel so that the following 

relationship holds 

^sig„(VS.V,)M. (3,S) 

The sign of (Vq ■ VV>) can be computed for the numerical solutions we have found, and 

to the extent that Vq and V^> are aligned, it gives the sign of dq/dip. This was done for 

each of the solutions. Figures 3.26(a), 3.27(a), 3.28(a) and 3.29(a) show the results for 

equilibria A, B',C, and E'. Shaded areas show regions in which dq/dip > 0. Also shown 

are the ^-contours for the solution. Figures 3.26(b), 3.27(b), 3.28(b) and 3.29(b) show 

regions in which the ^-contours are nearly parallel to the h contours. Shaded areas re 

regions in which the angle between V«? and V/i is less than 10°. Also shown are the h 

contours. We can see that the recirculation cells always have dq/dip positive regardless 

of the penetration extent of the jet. This is in contradiction to the theory of Marshall 

and Marshall (1992), which predicts a negative dq/dip within the recirculation cells for 

jets which turn back on themselves. 

The sign of Vq • Vip plotted in Figures 3.26 through 3.29 can be used to understand 

why some regions have stationary waves, and others do not. Recall that Vip gives the 

direction in which the current flows and that Vq gives the direction in which Rossby waves 

propagate their phases. Regions which have Vq • Vip negative can support stationary 

waves because the flow opposes the waves. Consistent with this, Figures 3.26 through 3.29 

show that regions with Vq • Vip < 0 (unshaded) have wavy ^-contours. The waviness of 

the solutions to the east of the recirculation cells is qualitatively similar to the dynamical 

regime defined by Moore's solution. 
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Figure 3.26: (a) Contour plot of potential vorticity (q) for equilibrium A. Shaded areas 
are regions in which Vq-Vip > 0, and unshaded areas are regions where Vq-Vip < 0. 
(b) Contour plot of the corresponding interface height anomaly (h). Shaded areas are 
regions in which the angle between Vq and V/i is less than 10°. 
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Figure 3.27: (a) Contour plot of potential vorticity for equilibrium B'. Shaded areas 
are regions in which Vg • V^ > 0, and unshaded areas are regions where Vq • Vip < 0. 
(b) Contour plot of the corresponding interface height anomaly (h). Shaded areas are 
regions in which the angle between S/q and V/i is less than 10°. 
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Figure 3.28: (a) Contour plot of potential vorticity for equilibrium C. Shaded areas are 
regions in which Vq ■ Vip > 0, and unshaded areas are regions where Vg • VV> < 0. (b) 
Contour plot of the corresponding interface height anomaly (h). Shaded areas are regions 
in which the angle between Vq and V/i is less than 10°. 
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Figure 3.29: (a) Contour plot of potential vorticity for equilibrium E'. Shaded areas 
are regions in which Vq • Vr/> > 0, and unshaded areas are regions where Vq • VI/J < 0. 
(b) Contour plot of the corresponding interface height anomaly (h). Shaded areas are 
regions in which the angle between V«? and Vh is less than 10°. 
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3.4    Fixed Points and Time-dependent simulations 

In Section 3.2 we described the phenomenology of the time dependent simulation. In 

this section we will revisit the time-dependent behavior of the model and explore the 

possibility that there is some connection between the trajectory of the model in phase 

space and the model's fixed points. 

There is a remarkable similarity between the contour plots of the interface anomaly 

for the flow averaged within the high energy regime and the fixed points E' (compare 

Figure 3.25 to Figure 3.5), for the medium energy regime and the fixed point C (compare 

Figure 3.22 and Figure 3.5) and for the low energy regime and the fixed point B' (compare 

Figure 3.20 and Figure 3.5). The zonal penetration scale for the jet is roughly equal for 

the fixed points and for the time averaged flows. Also, the meandering structure of the 

jet is remarkably similar. 

It is useful to first compare the energy level of the time-dependent simulation and 

the energy levels of the fixed points. Figure 3.30 shows a histogram of the total energy 

for the 1500 year time series as well as the energy level for each steady state solution. 

Very little of the distribution density spreads to energy levels higher than the level of 

equilibrium E'. As we will show below most of the density of high energy realizations can 

be attributed to trajectories which tend towards equilibrium E' from low energy levels. 

Except for the general agreement between the order of magnitude of the energy levels 

of the fixed points and the time dependent trajectory, there is no clear agreement between 

the energy levels of the steady state solutions and the peaks in the histogram near 

3.55 x 10~17 J (low energy) and 3.95 x 10~17 J (medium energy). Equilibrium C is 

close to the peak in the distribution near 3.95 x 1017 J, but, as we shall see using the 

distance diagnostic in Section 3.4.4, when the model trajectory is closer to equilibrium 

C its energy level is more often in the range of the low energy peak. Similarly, even 

though it appears that equilibrium D and D' line up with a possible high energy peak 

near 4.3 x 10-17 J, when the model is in this energy range it is usually much closer to 

equilibrium E'. Finally, when the model is closest to equilibrium D', it is usually in the 
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Figure 3.30: Histogram of the total energy distribution for a 1500 years. Also marked 
are the energy levels for each of the steady states. 
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Figure 3.31: Time averaged interface height anomaly field (C.I. 20 m). 

medium or low energy level, despite the fact that the energy level of this fixed point is 

in the range of the high energy regime. 

3.4.1    Fixed points and Modes of Variability 

If the idea that the model's fixed points act to steer the time-dependent trajectory in 

phase space is correct, we would expect to see modes of variability associated with struc- 

tures in phase space that point away from the time-mean state and towards the fixed 

points. We will restrict the study to the fixed points E', D', C and B' since they are most 

similar to the time averaged flows computed by McCalpin and Haidvogel. In Figure 3.31 

the time-mean interface height anomaly, h, is contoured. It is obtained by averaging the 

field saved at 5 day intervals over a period of 1200 years excluding the spin-up period. 

The amount of variability away from this mean state and towards the fixed points E', 

D', C", and B', can be evaluated. Using the Gram-Schmidt orthonormalization process, 

four orthonormal vectors which span the directions in phase space that point away from 

the mean state and towards the four primed fixed points can be created. The first mode, 
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model in Figure 3.32, is simply the normalized difference between the mean state and 

fixed point E': 

vl'   =   h-E' 

model   =   vl'/(vl',vl'). 

The second mode, mode2 in Figure 3.32, is the normalized difference between the mean 

state and fixed point D', less the projection onto model: 

v2'   =   h-D' 

v2"   =   v2'- (h, model) 

mode2   =   v2" / (v2", v2"). 

The third mode, mode3 in Figure 3.32, is the normalized difference between the mean 

state and fixed point C", less the projections onto model and mode2: 

v3'   =   h-C 

v3"   =   v3' — (h, model) — (h,mode2) 

modeS   =   v3"/(v3",v3"). 

Finally the fourth mode, modeA in Figure 3.32, is the normalized difference between the 

mean state and fixed point B', less the projection onto the three previous modes: 

v4'   =   h-B' 

v4"   =   vA' — (h, model) — (h, mode2) — (h, mode3) 

modeA   =   vA"/(vA",v4"). 

In Figure 3.32 we show the contour plots of model, mode2, mode3 and modeA. The 

amount of variability associated with each mode is obtained by projecting the deviations 

away from the mean onto the orthonormal set. Approximately 30 % of the total variability 

is captured by the four modes. The amount is significant considering that the system as 

24881 degrees of freedom. The break-up of the variability associated with each mode is 
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Figure 3.32: Four orthonormal modes (model, mode2, modeZ, and modeA) spanning the 
hyper plane defined by the difference from the time-averaged flow field and the steady 
state solutions E', D', C, and B' 

as follows: model, which points in the direction of E' captured 11% of the variability, 

model captured 7.9% of the variability, modeZ captured 7.2% of the variability, and 

modeA captured 4.4% of the variability. Furthermore, most of the variance in the interface 

height anomaly capture by the four modes, is at low frequencies. Figure 3.33 shows a 

plot of the frequency times power density spectrum for the basin integrated variance of 

the interface height anomaly for the full field, and for the field in which the projection 

onto the four modes has been removed. The plot shows a significant part of the variance 

associated with periods longer than 1 year project onto the four modes. The fixed points 

of the model do appear to steer the model trajectory in phase space, and thereby generate 

modes of low-frequency variability. 
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Figure 3.33: Frequency times power density spectrum for the variance of the interface 
height anomaly of the total field (upper curve), and for the field in which the part of 
the variance which projects onto model, model, mode?», and modeA has been removed 
(lower curve). The dashed lines are 95% confidence intervals. 
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3.4.2 Distance Diagnostic 

To quantify in a more objective manner the similarity between the fixed points and the 

time averaged flows within each of the high, medium and low energy regimes, the distance 

in phase space between a fixed point and the instantaneous model state can be evaluated. 

The distance dx(t) between a fixed point X and the model state at time t is give by 

d\{t) = -pog' ff(h(x,y;t)-X(x,y))2dxdy, (3.19) 

in which potential energy was used as the norm. 

Using the 1500 year time-series of the interface height anomaly, sampled at 5 day 

intervals, 8 time-series for the distance between the instantaneous model state and the 8 

fixed points were computed. The distance diagnostic reveals a more complicated picture 

than the simple interpretation that there is, for example, a one to one correspondence 

between the high, medium, and low energy regimes and the fixed points E', C and B'. 

Before discussing the results, we first illustrate the use of the distance diagnostic with 

the familiar Lorenz model. 

3.4.3 Example: Distance Diagnostic for the Lorenz Model 

In this subsection we use the Lorenz model to illustrate the idea of distance in phase 

space. The Lorenz model is given by the following set of three ordinary differential 

equations, 

dX 
— =   <r(Y-X), (3.20) 

dY 
— =   rX-Y-XZ, (3.21) 

dZ 
It    =   XY~bZ- (»■») 

With the parameters chosen as follows: a = 10, r = 28, and b = 8/3, the model 

trajectories approach the well known Lorenz attractor (Figure 3.34). In Figure 3.34 the 

circles indicate the fixed points of the model which are located at (X = 0, Y = 0, Z = 0) 
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Figure 3.34: Typical trajectory of the Lorenz model illustrating the Lorenz attractor.The 
three circles indicate the three fixed points (C+,C~ and O). 

labeled O, at (X = 6\/2, Y = 6\/2, Z = 27) labeled C+, and at (X = -6\/2, F = -6y/2, 

Z = 27) labeled C~. The model attractor consists roughly of two spiraling lobes centered 

on the fixed points C+ and C~. The model trajectory exhibits irregular transitions from 

one lobe to the other. 

Figure 3.35 shows a typical time series of dc+(t), the distance from fixed points C+ 

to the model trajectory and dc-(t), the distance from fixed points C~ to the model 

trajectory. In general, when dc+ is small, dc- is relatively larger and executes large 

amplitude oscillations. Similarly, when when dc- is small, it is dc+ which is larger, and 

which executes large amplitude oscillations. 

The distance diagnostic can be used to illustrate the property that the closer the 

model trajectory gets to one of the fixed points C+ or C~, the longer the trajectory 

will spiral in the lobe centered on the fixed point. Figure 3.36 shows a scatter plot of 

the minimum distance from the instantaneous model state to the fixed point achieved 

for each event where the model spirals on the lobe centered on C+ versus the duration 

of the event.   We define an event to be an uninterupted period of time in which the 
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Figure 3.35: (a) Typical time series of the distance from the model trajectory to the fixed 
point C+. (b) Typical time series of the distance from the model trajectory to the fixed 
point C~. 

instantaneous model trajectory is closer to one fixed point rather than the other. The 

duration of each event increases as the minimum distance to the fixed point decreases. 

As will be shown in the next section, this is a feature shared by one of the fixed points 

of the ocean model. 

The fixed points of the Lorenz model can be thought of as analogs of the "basic 

state" of the ocean model within the high medium and low energy regimes, and the 

spirals around the fixed points of the Lorenz model are analogs of the eddy variability 

associated with each regime. In the next section we will test whether this analogy can 

be made more concrete by comparing the fixed points of the ocean model to the model's 

attractor. 

3.4.4    Distance Diagnostic Applied to the Ocean Model 

If we define the model trajectory to be in regime Rx whenever it is closer to fixed point 

X than to any other fixed point, it is possible to compute the fraction of time in which 
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Figure 3.36: Scatter plot of the minimum distance to the fixed point C+ as a function of 
the duration time for which the model trajectory is in the lobe centered on C+. 

the model state will be simultaneously in regime Rx and the low (TE < 3.75 x 1017J), 

medium (3.75 x 1017J <TE < 4.25 x 1017J) and high (TE > 4.25 x 1017J) energy states 

defined by McCalpin and Haidvogel (1996). 

Table 3.4 gives the fraction of the time that the model is in a given regime (defined 

by its proximity to a steady state) and is also in either the high, medium or low energy 

states. In general, the fixed point E' is associated with high and medium energy levels, 

the fixed point D' is associated with low and medium energy levels, the fixed point C 

is associated with medium and low energy levels and the fixed point B' is associated 

only with low energy levels. The table shows that when the model is in the high energy 

range it is usually in regime RE<- There is however a nonzero probability that it will 

be in either regime RD or RD>. When the model is in the Medium energy regime it is 

usually'in regimes RD> and RE>, and when the model is in the low energy range, there is 

a non-negligible probability that it will at some time be closer to any given fixed point 

than to any other, although it is usually closest to fixed points C" and B'. 

If the cross tabulations are restricted to persistent regimes, a simpler picture emerges 
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Regime High Medium Low 
RA 0.00 0.01 0.07 
RB 0.00 0.01 0.03 
RB' 0.00 0.00 0.22 
Rc 0.00 0.01 0.01 
Ra 0.00 0.16 0.35 
RD 0.09 0.04 0.03 
RD' 0.03 0.47 0.18 
RE' 0.88 0.31 0.10 

Table 3.4: Fraction of time spent closest to each of the fixed points given that it is either 
in the High, the Medium or the Low Energy regime. 

Regime 3-5 years 5-10 years > 10 
RA 0 0 0 
RB 0 0 0 
RB

1 0 0 0 
Rc 0 0 0 
Re 1 0 0 
RD 0 0 0 
RD' 21 1 0 
RE' 3 11 9 

Table 3.5: Number of events in which the model stayed in a particular regime for periods 
of time between 3 and 5 years, between 5 and 10 years and more than 10 years. 

for the role of fixed point E'. In Table 3.5 we give the number of realizations of a given 

regime as defined by the proximity to a fixed point for a duration of 3-5 years, 5-10 years, 

and longer than 10 years. From this table we can see that only regime RE> persists for 

periods of time greater than 3 years. For comparison, Table 3.6 shows the number of 

occurrences of the high, medium and low energy regimes that persist for lengths of time 

between 3-5 years, 5-10 years, and longer than 10 years. There is an exact correspondence 

between events where the model state is in the high energy regime, and that the model 

is closest to equilibria E'. However, when the model trajectory is in the medium and low 

energy regimes, for persistent periods of time, it does not stay persistently in the regimes 

associated with any particular fixed point. 

The correspondence between the various regimes as defined by the model's energy 
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Regime < 3 — 5 years 5 — 10 years > 10 
Low 

Medium 
High 

23 
23 

3 

14 
44 
11 

9 
33 

9 

Table 3.6: Number of events in which the model stayed in a particular regime for periods 
of time between 3 and 10 years, between 5 and 10 years, and more than 10 years. 

Regime < 3 — 10 years 10 — 15 years > 15 years 

RA 0.1400 0.0912 0.0211 

RB 0.0415 0.0738 0.0426 

RB> 0.2385 0.3529 0.2965 

Re 0.0369 0.0000 0.0000 

Re 0.3908 0.3442 0.5017 

RD 0.0600 0.0000 0.0000 
RD

1 0.0908 0.1086 0.1242 
RE> 0.0015 0.0293 0.0110 

Table 3.7: Fraction of the time spent closer to a given fixed point than to any other fixed 
point, given the the model is in the Low energy regime for an extended period of time 

level and the proximity of the model trajectory to the various fixed points can be further 

characterized. For persistent regimes, Table 3.7, Table 3.8, Table 3.9, give the relative 

time spent closer to any given fixed point while also being in either in the low, medium 

or high energy regimes. From Table 3.7 we see that whenever the model is in the low 

energy regime for persistent periods of time, the model trajectory partitions its time in 

the regimes Re, RB
1
 RD' and RA- From Table 3.8, we see that when the model state is 

in the medium energy regime, it partitions its time in the Re-, RD', and R& regimes. For 

those events when the model stays in the medium energy level for more than 10 years, 

it spends a considerable amount of time in regime R&- Finally from Table 3.9, we see a 

clear connection between persistent high energy events, and the proximity of the model 

trajectory to the fixed point E'. 

In Figure 3.37 we plot the square of the minimum distance to the fixed point E' for 

the 23 persistent high energy events listed in Table 3.6 as a function of the duration time 

of the corresponding events. From the plot we see that the closer the model trajectory 
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Regime < 3 — 10 years 10 — 15 years > 15 years 
RA 0.0223 0.0000 0.0000 
RB 0.0000 0.0000 0.0000 
RB> 0.0143 0.0000 0.0000 
Rc 0.0048 0.0000 0.0000 
Ra 0.1927 0.0249 0.0112 
RD 0.0000 0.0000 0.0000 
RD' 0.6226 0.5748 0.3844 
RE' 0.1433 0.4002 0.6045 

Table 3.8: Fraction of the time spent closer to a given fixed point than to any other fixed 
point, given the the model is in the Medium energy regime for an extended period of 
time 

Regime < 3 — 10 years 10 — 15 years > 15 years 
RA 0.0000 0.0000 0.0000 
RB 0.0000 0.0000 0.0000 
RB> 0.0000 0.0000 0.0000 
Rc 0.0000 0.0000 0.0000 
rc> 0.0000 0.0000 0.0000 
RD 0.0000 0.0000 0.0000 
RD' 0.0000 0.0000 0.0000 
RE' 1.0000 1.0000 1.0000 

Table 3.9: Fraction of the time spent closer to a given fixed point than to any other fixed 
point, given the the model is in the high energy regime for an extended period of time 
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Figure 3.37: Scatter plot of the square of the minimum distance to the fixed point E' as 
a function of the duration time for of each of the corresponding high energy events listed 
in Table 3.6. 

gets to the fixed point the longer the high energy event persists. This suggest that a 

more detailed study of the structure of phase space near the steady state E' might help 

further understand the dynamics of the high energy events. 

3.5    Structure of Phase Space near E' 

We have seen in the previous section that part of the model attractor lies close the fixed 

point E' in phase space. Because of the quasi-stability of the high energy regime, and the 

clear correspondence between persistent high energy regimes and the steady state solution 

E', it is worthwhile to further explore the behavior of the model in the neighborhood of 

this fixed point. 
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3.5.1    Linear Stability Analysis 

A linear stability analysis of the fixed point E' was performed following the method 

outlined in Appendix B. This involves looking for modal solutions, of the form 

v(x,y,t) = M(x,y)eat, (3.23) 

where M(x, y) and a can be complex. The mode can be rewritten in the following form 

v = Re{A(x, yjc^^e»*} = A(x, y)e*coa{<l>{x, y) + ut), (3.24) 

where u, 7, <f>(x, y) and A(x, y) are all purely real. The quantity 7 is the growth-rate of 

the mode. If it is positive, the solution is unstable and the mode will grow. The field 

A(x,y) is positive everywhere, and gives the spatial envelope or amplitude of the mode. 

The field <j>{x, y) varies from —TT/2 to +TT/2 and forms part of the phase, <f>(x, y) - ut. 

Locally we can approximate </>(x, y) by its Taylor expansion 

«*, ») = *, + ^ («) + 9-^f±(y) = *, + fa + ly, (3.25) 

so that V0 gives the direction of phase propagation, and c(x,y) = u/\V(f)(x,y)\ gives 

the local phase speed. The stronger the gradient in (f>, the slower the phase speed and 

conversely, the smaller the gradient in $ the faster the phase speed. 

The stability analysis reveals that the fixed point E'is unstable to a single oscillating 

mode with a period of approximately T = 2ir/u = 670 days, and a growth-rate with 

an e-folding time of 1/7 = 897 days. Figure 3.38(a) shows the amplitude, A(x,y), of 

the unstable eigen-mode, and Figure 3.38(b) shows the spatial structure, <f>(x,y), of the 

unstable eigen-mode's phase. The colormap in Figure 3.38(b) varies from black to light 

gray to dark gray as the phase varies from -ir/2 to n/2, i.e through one half cycles. 

The amplitude of the unstable mode, (Figure 3.38(a)), has a spatial structure con- 

sisting of 4 cells located along the jet axis and weaker cells situated over the recirculating 

currents to the north and south. The strongest cell is situated near 1700 km eastward 

of the western wall. The next strongest cell is situated at 1150 km and its intensity is 
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Figure 3.38: (a) Amplitude of the unstable eigen-mode. (b) Phase of the unstable eigen- 
mode. The phase propagates from black, to light gray to to dark gray. 
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% that of the strongest. The next cell is centered at 600 km and its intensity is 60% 

that of the strongest. The fourth cell, situated close to the western wall, has an intensity 

which is 50% that of the strongest cell. The cells situated over the westward flowing 

recirculation currents have maximums near 1900 km east of the western wall and decay 

slowly to the west and rapidly to the east. The strength of these cells is approximately 

10% of the strongest cell located on the jet axis. 

The phase structure, (Figure 3.38(b)) of the unstable mode is more complicated. Over 

most of the basin, where the basic state is in Sverdrup balance, and where the amplitude 

of the mode is negligible, the phase propagates slowly to the west, wrapping around 

the jet and recirculation gyres, so that the lines of constant phase become progressively 

more aligned in the east-west direction, and progress towards the jet from the north and 

from the south. In the region of the westward flowing recirculating currents, the phase 

progresses westward at a nearly constant speed, (Figure 3.39(a),(c)) going through one 

full cycle as it progresses from the eastern tip of the jet to the western boundary current 

in approximately 670 days. The phase speed of approximately 0.045 ms_1 is consistent 

with the phase speed of long Rossby waves, -ßRj = 0.045 ms-1, and with the westward 

drift speed of rings in the model. McCalpin and Haidvogel estimated a drift speed for the 

rings which was typically within 10% the phase speed for long Rossby waves. Along the 

jet axis, the direction of phase propagation changes directions several times as can be seen 

from Figure 3.39(b), and there are several extended regions where the phase speed nearly 

vanishes. The propagation of the phases with varying speed under the modulation of the 

spatially varying amplitude results in a complicated pattern of expanding and contracting 

cells which appear to be stationary at times, and to move very quickly at others. 

An initial value problem starting from fixed point E' was solved numerically for 20 

years. Figure 3.40(a) shows the evolution of the potential energy, and Figure 3.40(b) 

shows the evolution of the kinetic energy for the first 20 years. The very weak growth-rate 

of the unstable mode explains the relative stability of the high energy regime. Within 

a span of 20 years to total energy varies by less than 1 %. The time-varying structures 
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Figure 3.39: (a) Zonal phase speed along Y = 1600 km, the position of the northern 
recirculation current. (b)Zonal phase speed along Y = 1400 km, the position of the jet. 
(c) Zonal phase speed along Y = 1200 km, the position of the southern recirculation 
current. The speed is positive eastward and negative westward. 
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Potential Energy: ic = E 

Kinetic Energy: ic = E 

Figure 3.40: (a) Time series for the potential energy for a simulation starting with fixed 
point E' as initial condition, (b) Corresponding time series for the kinetic energy. 

observed during the 20 year simulation are very similar to those of the unstable eigen- 

mode, and to the structures observed in full simulation when the the model trajectory is 

near the fixed point E'. 

3.6    Discussion 

In this Chapter we have demonstrated that much of the low-frequency variability, 30 % of 

the total variance, in the interface height anomaly is associated with structures that lie in 

a 4-dimensional hyper-plane spanned by modes formed by taking the difference between 

the mean state of the model and the fixed points E', D', C and B'. The last three of 

these equilibria are members of three pairs of equilibria which are the result of three 

successive symmetry breaking pitchfork bifurcations. The asymmetry in the wind-stress 

curl has selected one member from each pair of nearly mirror image equilibria, namely, 
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the one with a jet which first turns south, after separating from the western wall near 

the line of zero wind-stress curl. 

Furthermore, we have demonstrated that the high energy regime identified by Mc- 

Calpin and Haidvogel (1996) is associated with the existence of a nearly anti-symmetric 

fixed point or steady state solution which we labeled E'. A modal stability analysis 

has revealed that this fixed point is unstable to a single mode which is oscillatory in 

nature. The growth-rate of the mode is weak, with an e-folding time of nearly 2.5 years, 

explaining in part the quasi-stability of the high-energy regime. 

McCalpin and Haidvogel (1996), have noted that as the wind-stress curl profile is 

made progressively more asymmetric by increasing a, the occurrence of persistent the 

high energy events decreases gradually. Consistent with this observation, the existence 

of the fixed point E' depends on the parameter a. Only for —0.166 < a < +0.166 does 

the fixed point exist. Figure 3.41 shows a bifurcation diagram of the total energy as a 

function of a for the fixed points E' and D'. At a = 0.166 there is a turning point where 

the branch E' merges with the branch D'. The existence of this turning point is reflected 

in the time-dependent simulations of McCalpin and Haidvogel. They found that by the 

time a was increased to 0.1, there were no high energy events which persisted for periods 

greater than 3 years. 

Finally, the important role played by the basin geometry in modifying the bifurcation 

structure of the model should be pointed out. The larger zonal to meridional aspect 

ratio of the basin used in this chapter has allowed twice as many pitchfork bifurcations 

to occur occur than for a narrower basin (and perhaps other pitchfork bifurcations would 

occur if the biharmonic viscosity had been reduced even further). In addition, the wider 

basin has clarified the nature of the symmetry breaking bifurcations, by making evi- 

dent the quantized nature of the meanders in the jet separating the recirculation gyres. 

Each bifurcation, adds an additional half meander to the non-symmetric solutions. In 

the calculation by Cessi and Ierley (1995) the narrow basin allows only two pitchfork 

bifurcations to occur. They form the first two in a sequence that would get progressively 
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Figure 3.41: Bifurcation diagram of total energy in Joules versus a. There is a turning 
point where the branches for fixed points E' and D' merge at a = 0.0166. 

longer if the basin was allowed to get progressively wider. Also, the calculations presented 

here suggest that the interaction of the jet with the eastern wall might be responsible for 

the existence of the saddle node bifurcation leading to multiple anti-symmetric equilibria 

found by Ierley and Sheremet (Ierley and Sheremet 1995) for the single gyre case. Again 

the narrow aspect ratio of the basin obscures this possible connection. 
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Chapter 4 

Conclusions 

4.1    Summary of the Thesis 

The major hypothesis presented in this thesis is that both stable and unstable steady solu- 

tions are useful in describing and explaining the time-mean and low-frequency variability 

of ocean models. Steady and time-dependent solutions are examined for two ocean mod- 

els of the wind-driven circulation. The first model, studied in Chapter 2, is a barotropic 

model driven by a sinusoidal wind-stress curl profile in a rectangular basin with a zonal 

to meridional aspect ratio of 1:2. The explicit dissipation consists of bottom drag and 

biharmonic diffusion of relative vorticity with super-slip boundary conditions applied at 

the basin boundary. The second model, studied in Chapter 3, is a reduced gravity quasi- 

geostrophic model in a basin with a zonal to meridional aspect ratio of 9:7. Like the first 

model, it has an explicit dissipation operator with bottom drag and biharmonic diffu- 

sion of vorticity, but the boundary condition is different. Free-slip instead of super-slip 

boundary conditions are applied at the basin walls. In addition to these differences, the 

symmetry of the imposed mechanical forcing is relaxed, and an additional parameter is 

added to the model. 

Both models have previously been studied, but only through prognostic integration 

of the time-dependent model. The major novelty of this work with respect to previous 
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results is that pseudo-arclength continuation, based on Newton's method, is used to 

find both stable and unstable steady state solutions. Marshall (1984), computed time- 

dependent solutions of the barotropic model in order to study the role played by eddies 

in setting the mean state of the circulation by redistributing vorticity across the inter- 

gyre boundary. McCalpin and Haidvogel (1996), computed time-dependent solutions of 

the reduced gravity model in order to study the intrinsic low-frequency variability of the 

circulation driven by a steady wind-stress curl. 

4.1.1    Results Concerning the Low-frequency Variability and 

the Time-mean 

The thesis shows that much of the low-frequency variability of the model is associated 

with trajectories that tend in the direction of unstable fixed points. In Chapter 3, we 

show that the multiple regimes identified in the time-dependent simulation (McCalpin 

and Haidvogel (1996)) have flow fields which are very similar to the steady state solutions. 

Averaging the flow field within each regime shows that both the meandering structure 

and the eastward extent of the jet are remarkably similar to some of the steady state 

flow fields. Many aspects of the low-frequency variability can be captured by spatial 

structures in phase-space which point away from the time-mean state and towards the 

model's fixed points (Chapter 3, Section 3.4.1). Four spatial structures, constructed 

to span the hyper-plane formed by taking the difference from the time-mean flow-field 

and four of the fixed points can capture 30% 1 of the total interface height variance - a 

significant amount considering that the full system is described by 24881 modes or grid 

points. 

There is of course no general reason for an arbitrary dynamical system to behave in 

such a manner. It is a property of the ocean model in the explored parameter range 

that some of the fixed points we found are related to the model's attractor.   There is 

The partition of the variance among the four modes depends on the order in which they were 
orthonormalized, but the total is independent of this ordering 
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no guarantee that the fixed points will remain close to the attractor in other parameter 

ranges. However, the investigated parameter range is important since it produces realistic 

oceanic flow fields. 

The bifurcation structure we have mapped out is also useful in organizing some of 

the time-dependent behavior of the models as the external parameters are varied. The 

appearance and disappearance of steady state solutions via saddle node bifurcations in 

parameter space can mark the transition between different time-dependent dynamical 

regimes. 

In Chapter 2, we found that a saddle node bifurcation which marks the disappearance 

of non-symmetric vorticity exchanging steady solutions also marks a change in the na- 

ture of the time-dependent solutions. On one side of the saddle node bifurcation where 

the non-symmetric steady solutions exist, turbulent time-dependent solutions with in- 

stantaneous fields similar to the steady-state flow fields, transfer vorticity across the line 

of zero wind-stress curl. This transfer allows a global vorticity balance which retains a 

time-mean Sverdrup solution in parts of the basin. On the other side of the saddle node 

bifurcation where the non-symmetric solutions do not exist, all trajectories converge to 

an anti-symmetric steady state solution with basin filling inertial gyres. In this case the 

Sverdrup solution is completely destroyed. This suggests that the part of the attractor 

that contains the turbulent vorticity exchanging solutions is linked to the presence of the 

non-symmetric fixed point. 

In Chapter 3, a saddle node bifurcation marking the disappearance of a high energy 

nearly anti-symmetric steady state solution separates two regimes with different low- 

frequency variability characteristics. On one side of the saddle-node bifurcation point 

where the wind-stress profile is more nearly anti-symmetric, the model exhibits low- 

frequency variability associated with irregular transitions to a quasi-stable high energy 

state. On the other side of the saddle-node bifurcation point, where the wind-stress 

profile is more asymmetric, no such low-frequency variability exists. A further result 

is that the closer the model trajectory approaches the fixed point the longer the quasi- 
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stable high energy regime persists. It seems therefore reasonable that the fixed point 

attracts the time-dependent trajectories along its stable manifold to produce the irregular 

high energy episodes and the associated low-frequency variability. As the saddle-node 

bifurcation point is approached, the stable manifold becomes progressively less attracting, 

which makes the high energy events increasingly less likely. Past the bifurcation point, 

the elimination of the fixed point also eliminates the mechanism that generates the low- 

frequency variability. 

4.1.2    Results Concerning the Aspect Ratio of the Basin 

A typical property of the bifurcation structure for fluid dynamics problems is that it 

depends strongly on the underlying geometry of the model (Seydel (1994)). This is also 

the case in this study. The different zonal to meridional aspect ratio of the basins used 

in the two models has dramatic effects on the bifurcation structure of the steady state 

solutions. As the flow is made more nonlinear by either decreasing the dissipation or 

increasing the forcing, the recirculation cells expand in size in the zonal direction until 

they reach the eastern wall. Successive symmetry breaking pitchfork bifurcations occur 

as the jet progresses deeper into the basin interior. The larger zonal to meridional aspect 

ratio used in Chapter 3, (9:7), allows 8 symmetry breaking pitchfork bifurcations to occur 

before the jet reaches the eastern wall. The previous studies of Jiang et al (1995), Cessi 

and Ierley (1995), and Dijkstra and Katsman (1996) all used basins with a 1:2 aspect 

ratio. Cessi and Ierley (1995) found only 2 pitchfork bifurcations in a narrow basin. 

With a similar aspect ratio but with different boundary conditions the model of Chapter 

2, also had only 2 or 4 pitchfork bifurcations depending on the strength of the bottom 

friction. 

The wider basin not only allows additional pitchfork bifurcations to occur, but also 

clarifies their nature. Each successive symmetry breaking pitchfork bifurcation occurs 

when the viscosity is reduced enough for the jet to penetrate sufficiently far into the basin 

interior to allow an integral number of half meanders in the jet in the new equilibria. 
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The length of the meanders decreases downstream. For the model configuration used in 

Chapter 3, each successive bifurcation occurs when the jet has penetrated approximately 

450 additional kilometers into the basin interior. 

The wider basin also allows for a transition region with damped Rossby waves in 

between the recirculation cells and the Sverdrup interior. This Rossby wave field is 

similar to the solution proposed by Moore (1963) for the structure of the inertial western 

boundary layer where the Sverdrup flow is eastward. As discussed by Pedlosky (1996), 

the Moore solution cannot be regarded as a model of the western boundary layer but 

should be viewed as a distinct dynamical regime for the region separating the recirculation 

cells and the Sverdrup interior. Before the present study, the stationary wave field had 

only been observed in a model with no-slip boundary conditions, because only with such 

boundary conditions does the recirculation cell remain limited enough to allow for a zonal 

Sverdrup interior that can support stationary Rossby waves. With a wider basin, the 

stationary Rossby wave field can exist even with free slip boundary conditions. 

Finally, it is interesting to note that the saddle-node bifurcation leading to multiple 

anti-symmetric equilibria occurs at the same parameter value for which the jet reaches 

the eastern wall. This coincidence is not so striking for the narrow basin experiments. 

This result suggests that the cusp catastrophe identified by Ierley and Sheremet (1995) 

is related to the interaction of the jet with the eastern wall. 

4.2    Future Work 

The results presented in this thesis have pointed out the major role played by the ge- 

ometry of the basin and by the geometry of the wind-stress in modifying the bifurcation 

structure of the model. The effects of non-zonal winds and of basins with different aspect 

ratios could be easily analyzed using the present method. The effect of bottom topogra- 

phy could also be studied with the present method, provided the topographic slopes are 

gentle enough to allow the quasi-geostrophic approximation to remain valid. Further, the 
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effects of irregular coast-lines could be studied by using a finite-elements discretization 

of the governing equations so that the basin geometry could be modified in a continuous 

way, thereby making continuation methods applicable to the problem. Other effects, like 

stratification, could in principle also be included provided enough computer memory is 

available to apply Newton's method. 

The construction of a damped stationary Rossby wave model to explain the nature 

of the meandering structure of the null modes at the pitchfork bifurcations would useful. 

In addition, it would be interesting to compare those modes with those obtained by 

assuming that the jet is a zonal parallel flow. 
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Appendix A 

Bifurcation theory terminology 

If for some parameter value one of the eigenvalues in the spectrum vanishes (see Ap- 

pendix B for a definition of the spectrum), the steady state solution and the corresponging 

value for the parameter form a bifurcation point, or more precisely a zero-eigenvalue 

bifurcation point. The most common are the saddle-node, transcritical and pitch- 

fork bifurcations. Figure A.l gives typical graphs for each of these bifurcation types 

and introduces some alternative terminology that is sometimes used. 

In a 2-dimensional parameter space there is an unfolding of the fold bifurcation at a 

cusp point. This folding or unfolding is also known as a fold catastrophe. Figure A.2 

shows how a the region where the surface folds over on itself projects as a cusp on a 

2-demensional parameter space. 

The symmetry breaking pitchfork bifurcation can also be understood in terms of 

similar folded surface in 3-dimensions. Pitchfork bifurcations occur when there is a 

symmetry in the problem. Suppose that a is the parameter controling the anti-symmetry 

of the problem such that for a = 0, the problem is perfectly anti-symmetric, and for a ^ 0 

the symmetry is destroyed. The pitchfork bifurcation occurs on the intersection of the 

folded surface with the plane defined by a — 0. The perturbed or imperfect pitchfork 

bifurcation appears on the intersection of the folded surface with a plane define by 

a = const 7^ 0.   Figure A.3 shows the pitchfork bifurcation when a = 0 (perfect 
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(a) saddle-node bifurcation point 

(a.k.a. nose point, turning point, and fold bifurcation point) 

(b) supercritical pitchfork bifurcation point 
(a.k.a. forward pitchfork bifurcation point) 

(c) subcritical pitchfork bifurcation point 
(a.k.a backward pitchfork bifurcation point) 

(d) transcritical bifurcation point 

Figure A.l: Typical zero-eigenvalue bifurcations. The control paramter varies along the 
abscissa and the solution varies along the ordinate. 
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Figure A.2: Cusp catastrophe in a 2-dimensional parameter space. 
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Figure A.3: Left panel: pitchfork bifurcation for a = 0 (perfect anti-symmetry). Right 
panel: perturbed pitchfork bifurcation for a > 0 (no symmetry). 

anti-symmetry) and the perturbed pitchfork bifurcation for a > 0 (no symmetry). 

Finaly, if a pair of complex conjugate eigenvalues crosses the imaginary axis, and all 

other eigenvalues are stable (i.e. to the left of the imaginary axis), a Hopf bifurcation 

occurs. The Hopf bifurcation leads to self-sustained oscillations. 
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Appendix B 

Method of solution 

The governing equation is discretized using finite differences on a nonuniform rectangular 

grid, with Nx grid points in the x direction and Ny grid points in the y direction. The 

scheme is made to be second order accurate on the nonuniform grid by using a method 

outlined in Marti et al. (Marti et al. 1992). The physical coordinates, (x, y) are given in 

terms of the computational coordinates {(i, j) | i = 1, 2,... Ny and j = 1,2,... Nx} by 

the following formulae 

1 + mx 1 + my 

where 

The quantities mx and my are adjustable parameters that control the degree to which grid 

lines are concentrated near the western boundary and near the line of zero wind-stress 

curl. See Figure B.l for an example of a coarse computational grid (mx = my = 1.5) 

used in Chapter 3. 

The Jacobian is discretized using Arakawa's (Arakawa 1966), formulation with the 

appropriate modification for the nonuniform grid spacing (Salmon and Talley 1988). 

For the super-slip boundary condition used in Chapter 2, the potential vorticity on the 

boundary is treated as an unknown that must be solved as part of the solution, and the 
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Coarse grid 
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Figure B.l: Computational grid used for coarse resolution solutions. The grid spacing 
in the X direction varies from 30 km along the western wall to 90 km along the eastern 
wall, and the grid spaceing in the Y direction varies from 30 km in the center of the basin 
to 90 km along the northern and southern walls. 

no flux boundary conditions are treated using second order accurate centered differences. 

After discretization, the PDE is expressed as a coupled system of nonlinear ordinary 

differential equations for the time dependent case and a coupled system of nonlinear 

algebraic equations for the steady case. There is one unknown for each grid point which 

can be organized into a state vector u. Elements of u corresponding to grid points in the 

interior of the domain are the values of iß evaluated at the interior grid points and those 

elements of u corresponding to grid-points on the boundary of the domain are the values 

of C evaluated at the boundary grid points. The discretized equation for the steady state 

can be written as follows 

F(u;6I,6s,6H) = Q. (B.3) 

The steady state solutions are found using a pseudo-arclength predictor-corrector 
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continuation algorithm. An Euler predictor step is used as an initial estimate of the solu- 

tion, followed by an iterative Newton corrector. The solution branches are parameterized 

using pseudo-arclength continuation (Seydel 1994), which allows the solution branches 

to be traced past singular points. The pseudo-arclength, s, is given for 0 < C < 1, by the 

folowing parameterizating equation 

N 

0 = p(u; OH, s) := (s - Sj) - (1 - C)(&H - ^H^s^d^s^jds - C, £(ui ~ Ui{sj))dui(sj)/ds. 

(B.4) 

In the above equation, SH can be substituted by either 8i, 8s, or any other parameter. 

Bifurcation points leading to multiple equilibria occur at parameter values where one 

of the eigenmodes of the system linearized about the fixed point is zero. In other words, 

if we substitute solutions of the form 

V'(a:,y,t) = e*V(z,y), (B.5) 

into the linearized system of equations we obtain the following eigenvalue problem 

aV2<ß + Jty„ (J?VV) + At, SKs + y) = -8SV
2<J> - 4V4(V2</>), (B.6) 

where tps is the steady state equilibria. The set of eigenvalues {a} is called the spectrum. 

The discretizated linear stability equation can be rewritten in matrix form as a gen- 

eralized eigenvalue problem 

Fuv = o-Lv. (B.7) 

Fu is the Jacobian matrix of partial derivatives and L is a discretized version of the 

Laplacian operator. The discretized eigenmode is given by v, and its eigenvalue is given 

by a. 

Zero-eigenvalue bifurcations can be detected without solving the stability problem. 

Instead, the sign of the determinant of the Jacobian matrix of partial derivatives of the 

discretized system of equations is monitered - any change of sign indicates that a real 

eigen value has crossed the imaginary axis. 
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To detect if a Hopf bifurcation as occurred as one of the equation' s parameters is 

varied, a method introduced by Neubert (Neubert 1993), is used. The method consists 

of a predictor-corrector strategy to follow the curve of the dominant eigenvalue a as 

a function of one of the parameters. A subsequent computation is used to detect the 

possibility of the occurrence of an exchange of roles whereby an eigenvalue not being 

followed becomes dominant with respect to the real part. 

B.l    Some practical details 

Implementing the above procedure - i.e. setting up the operator Fu - can be greatly 

simplified by (i) use of a modular coding approach in setting up the operators and (ii) 

use of MATLAB. 

Modular coding of linearized operators 

The Fu matrix is rather complex - but the following modular approach brings some 

elegance to bear on the problem and should greatly reduces the chance of coding errors. 

Let us set ou the state vector ordered in the following way, in a great big column 

vector of dimension (1 x NxNy) 

V>12 

*l>ij 
<A \nx 

Ynynx—1 

i   tynynx        I 
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Define: the 'forward differencing operator', an (n x n) matrix: 

/ 

£- 

\ 

-1   1 

-1   1 

\ 

the 'backward differencing operator' 

-1 1 

o 

-l l 

-i i 

-i i 

the 'Dirichelet b.c. operator' 

/ 

D+
n = 

V 
the 'periodic difference operator' 

\D- 
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p+ = 

-1 1 

0 

V 

0 

0   -1 

lPn   = 

-1 

\ 1     1 
/ 

Then the centered-difference second derivative operator with Dirichelet b.c. can be writ- 

ten: 

^ = i*([D»+ + tf]-fcr + *n]) 

The centered-difference second derivative operator with periodic b.c: 

^ = ^{[^ + ^]-[Pn+S~]) 

Laplacian operator in a channel with Dirichelet b.c. on the northern and southern walls 

is: 

A = (Iny ~ D+v ~ D~y) ® (J-j { [p+  + #J  _  [p-  + S-x] }) 

+ 
Av ̂ {[K + #J - fcr, + s-y]}) ® 4 

Note that A is an (n^ x nxny) matrix and 7nx and (nx x nx) matrix etc. 

An example 

Centered difference advection in the x-direction, by a constant zonal flow U: 

dx (iny ~ D$y ~ D~y) ® ^L [P+  + 5+] + [P-  + 5n 
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where U is an (nxny x nxny) matrix. 

/ 

U 

Un 

U 12 

Utl 

U, i2 

\ Unxny   I 

Advection of vorticity, for example, can be represented thus 

U—V2ip = AA^ 
ox 

and likewise for VS-V2iß etc etc. 

153 



Appendix C 

Convergence and grid resolution 

In this section, the issue of convergence of the steady state solutions as the grid resolution 

is increased is discussed. Some of the computations were repeated using a uniform grid 

with half and twice as many grid points in both the x and y direction. The three grids 

had (33 x 17), (65 x 33), and (129 x 65) grid points in the x and y directions. In all the 

computations Ss and 8H are fixed at 0.01 and 0.04 respectively. 

The bifurcation structure found in Chapter 2 is not changed qualitatively in going 

from a 33 x 17 grid point model to a 129 x 65 grid point model. The coarse resolution 

model with only 33 x 17 grid points is sufficient to capture the existence of all the 

bifurcations of the anti-symmetric branch found using the higher resolution model with 

129 x 65 grid points. Table 1 shows that the discretized model appears to be converging 

quantitatively as the grid spacing is reduced. 
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Bifurcation Point Resolution Si 
ö(h2) relative difference 

PFN1 33 x 17 0.0362 
2% 

65x33 0.0334 
0.5% 

129 x 65 0.0340 
PFN2 33 x 17 0.0743 

0.2% 
65x33 0.0737 

0.1% 
129 x 65 0.0734 

Hopf 1 33 x 17 0.0762 
0.6% 

65x33 0.0743 
0.1% 

129 x 65 0.0740 
Hopf 2 33 x 17 0.1720 

3% 
65x33 0.1522 

1% 
129 x 65 0.1514 

PFN3 33 x 17 0.1416 
8% 

65x33 0.0991 
<0.1% 

129 x 65 0.0990 
PFN3 33 x 17 0.1577 

7% 
65x33 0.1145 

0.1% 
129 x 65 0.1140 

Table C.l: Comparison of the location of the bifurcation points for d~s = 0.01 and 

5H = 0.04, computed on three grids with uniform grid point spacing and with 33 x 17, 

65 x 33, and 129 x 65 grid points in the y and x directions. Column 3 gives ö(h2) estimate 

for the location of the bifurcation points. Columns 4 gives the relative difference of the 

location of the bifurcation points calculated on the different grids. 
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